Sandwiching dense random regular graphs between binomial random graphs

被引:0
|
作者
Pu Gao
Mikhail Isaev
Brendan D. McKay
机构
[1] University of Waterloo,
[2] Monash University,undefined
[3] Australian National University,undefined
来源
关键词
Random graph; Sandwich conjecture; Subgraph probability; Coupling; 05C80; 05A16; 05C30;
D O I
暂无
中图分类号
学科分类号
摘要
Kim and Vu made the following conjecture (Advances in Mathematics, 2004): if d≫logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\gg \log n$$\end{document}, then the random d-regular graph G(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,d)$$\end{document} can asymptotically almost surely be “sandwiched” between G(n,p1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,p_1)$$\end{document} and G(n,p2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,p_2)$$\end{document} where p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1$$\end{document} and p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2$$\end{document} are both (1+o(1))d/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+o(1))d/n$$\end{document}. They proved this conjecture for logn≪d⩽n1/3-o(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log n\ll d\leqslant n^{1/3-o(1)}$$\end{document}, with a defect in the sandwiching: G(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,d)$$\end{document} contains G(n,p1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,p_1)$$\end{document} perfectly, but is not completely contained in G(n,p2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,p_2)$$\end{document}. The embedding G(n,p1)⊆G(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,p_1) \subseteq {\mathscr {G}}(n,d)$$\end{document} was improved by Dudek, Frieze, Ruciński and Šileikis to d=o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=o(n)$$\end{document}. In this paper, we prove Kim–Vu’s sandwich conjecture, with perfect containment on both sides, for all d where min{d,n-d}≫n/logn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{d, n-d\}\gg n/\sqrt{\log n}$$\end{document}. The sandwich theorem allows translation of many results from G(n,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,p)$$\end{document} to G(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,d)$$\end{document} such as Hamiltonicity, the chromatic number, the diameter, etc. It also allows translation of threshold functions of phase transitions from G(n,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,p)$$\end{document} to bond percolation of G(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {G}}(n,d)$$\end{document}. In addition to sandwiching regular graphs, our results cover graphs whose degrees are asymptotically equal. The proofs rely on estimates for the probability of small subgraph appearances in a random factor of a pseudorandom graph, which is of independent interest.
引用
收藏
页码:115 / 158
页数:43
相关论文
共 50 条
  • [1] Sandwiching dense random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2022, 184 (1-2) : 115 - 158
  • [2] Correction: Sandwiching dense random regular graphs between binomial random graphs
    Pu Gao
    Mikhail Isaev
    Brendan D. McKay
    [J]. Probability Theory and Related Fields, 2023, 187 : 517 - 517
  • [3] Sandwiching random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    [J]. PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 690 - 701
  • [4] Sandwiching random regular graphs between binomial random graphs
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    [J]. PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 690 - 701
  • [5] Sandwiching dense random regular graphs between binomial random graphs (vol 184, 115, 2022)
    Gao, Pu
    Isaev, Mikhail
    McKay, Brendan D.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2023, 187 (1-2) : 517 - 517
  • [6] The Diameter of Dense Random Regular Graphs
    Shimizu, Nobutaka
    [J]. SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1934 - 1944
  • [7] Sandwiching random graphs: universality between random graph models
    Kim, JH
    Vu, VH
    [J]. ADVANCES IN MATHEMATICS, 2004, 188 (02) : 444 - 469
  • [8] Sandwiching biregular random graphs
    Klimosova, Tereza
    Reiher, Christian
    Rucinski, Andrzej
    Sileikis, Matas
    [J]. COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (01) : 1 - 44
  • [9] On the asymmetry of random regular graphs and random graphs
    Kim, JH
    Sudakov, B
    Vu, VH
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) : 216 - 224
  • [10] THE SPECTRAL GAP OF DENSE RANDOM REGULAR GRAPHS
    Tikhomirov, Konstantin
    Youssef, Pierre
    [J]. ANNALS OF PROBABILITY, 2019, 47 (01): : 362 - 419