FORWARD AND INVERSE UNCERTAINTY QUANTIFICATION USING MULTILEVEL MONTE CARLO ALGORITHMS FOR AN ELLIPTIC NONLOCAL EQUATION

被引:8
|
作者
Jasra, Ajay [1 ]
Law, Kody J. H. [2 ]
Zhou, Yan [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
[2] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
关键词
uncertainty quantification; multilevel Monte Carlo; sequential Monte Carlo; nonlocal equations; Bayesian inverse problem; TRANSPORT;
D O I
10.1615/Int.J.UncertaintyQuantification.2016018661
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper considers uncertainty quantification for an elliptic nonlocal equation. In particular, it is assumed that the parameters which define the kernel in the nonlocal operator are uncertain and a priori distributed according to a probability measure. It is shown that the induced probability measure on some quantities of interest arising from functionals of the solution to the equation with random inputs is well-defined,s as is the posterior distribution on parameters given observations. As the elliptic nonlocal equation cannot be solved approximate posteriors are constructed. The multilevel Monte Carlo (MLMC) and multilevel sequential Monte Carlo (MLSMC) sampling algorithms are used for a priori and a posteriori estimation, respectively, of quantities of interest. These algorithms reduce the amount of work to estimate posterior expectations, for a given level of error, relative to Monte Carlo and i.i.d. sampling from the posterior at a given level of approximation of the solution of the elliptic nonlocal equation.
引用
收藏
页码:501 / 514
页数:14
相关论文
共 50 条
  • [1] Uncertainty Quantification for Porous Media Flow Using Multilevel Monte Carlo
    Mohring, Jan
    Milk, Rene
    Ngo, Adrian
    Klein, Ole
    Iliev, Oleg
    Ohlberger, Mario
    Bastian, Peter
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 145 - 152
  • [2] Uncertainty quantification in the Henry problem using the multilevel Monte Carlo method
    Logashenko, Dmitry
    Litvinenko, Alexander
    Tempone, Raul
    Vasilyeva, Ekaterina
    Wittum, Gabriel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 503
  • [3] Uncertainty Quantification for the BGK Model of the Boltzmann Equation Using Multilevel Variance Reduced Monte Carlo Methods
    Hu, Jingwei
    Pareschi, Lorenzo
    Wang, Yubo
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 650 - 680
  • [4] Multilevel Monte Carlo FDTD Method for Uncertainty Quantification
    Zhu, Xiaojie
    Di Rienzo, Luca
    Ma, Xikui
    Codecasa, Lorenzo
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (10): : 2030 - 2034
  • [5] EMBEDDED MULTILEVEL MONTE CARLO FOR UNCERTAINTY QUANTIFICATION IN RANDOM DOMAINS
    Badia, Santiago
    Hampton, Jerrad
    Principe, Javier
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (01) : 119 - 142
  • [6] Parallel Multilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coefficients
    Zakharov, Petr
    Iliev, Oleg
    Mohring, Jan
    Shegunov, Nikolay
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 463 - 472
  • [7] Multilevel Monte Carlo applied for uncertainty quantification in stochastic multiscale systems
    Kimaev, Grigoriy
    Chaffart, Donovan
    Ricardez-Sandoval, Luis A.
    AICHE JOURNAL, 2020, 66 (08)
  • [8] Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems
    Scheichl, R.
    Stuart, A. M.
    Teckentrup, A. L.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 493 - 518
  • [9] Improved Estimation and Uncertainty Quantification Using Monte Carlo-Based Optimization Algorithms
    Xu, Cong
    Baines, Paul
    Wang, Jane-Ling
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (03) : 771 - 791
  • [10] UNCERTAINTY QUANTIFICATION OF THE GEM CHALLENGE MAGNETIC RECONNECTION PROBLEM USING THE MULTILEVEL MONTE CARLO METHOD
    Sousa, Eder M.
    Lin, Guang
    Shumlak, Uri
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2015, 5 (04) : 327 - 339