FORWARD AND INVERSE UNCERTAINTY QUANTIFICATION USING MULTILEVEL MONTE CARLO ALGORITHMS FOR AN ELLIPTIC NONLOCAL EQUATION

被引:8
|
作者
Jasra, Ajay [1 ]
Law, Kody J. H. [2 ]
Zhou, Yan [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
[2] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
关键词
uncertainty quantification; multilevel Monte Carlo; sequential Monte Carlo; nonlocal equations; Bayesian inverse problem; TRANSPORT;
D O I
10.1615/Int.J.UncertaintyQuantification.2016018661
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper considers uncertainty quantification for an elliptic nonlocal equation. In particular, it is assumed that the parameters which define the kernel in the nonlocal operator are uncertain and a priori distributed according to a probability measure. It is shown that the induced probability measure on some quantities of interest arising from functionals of the solution to the equation with random inputs is well-defined,s as is the posterior distribution on parameters given observations. As the elliptic nonlocal equation cannot be solved approximate posteriors are constructed. The multilevel Monte Carlo (MLMC) and multilevel sequential Monte Carlo (MLSMC) sampling algorithms are used for a priori and a posteriori estimation, respectively, of quantities of interest. These algorithms reduce the amount of work to estimate posterior expectations, for a given level of error, relative to Monte Carlo and i.i.d. sampling from the posterior at a given level of approximation of the solution of the elliptic nonlocal equation.
引用
收藏
页码:501 / 514
页数:14
相关论文
共 50 条
  • [41] Sequential Monte Carlo methods for Bayesian elliptic inverse problems
    Beskos, Alexandros
    Jasra, Ajay
    Muzaffer, Ege A.
    Stuart, Andrew M.
    STATISTICS AND COMPUTING, 2015, 25 (04) : 727 - 737
  • [42] Sequential Monte Carlo methods for Bayesian elliptic inverse problems
    Alexandros Beskos
    Ajay Jasra
    Ege A. Muzaffer
    Andrew M. Stuart
    Statistics and Computing, 2015, 25 : 727 - 737
  • [43] Multilevel quasi-Monte Carlo for optimization under uncertainty
    Philipp A. Guth
    Andreas Van Barel
    Numerische Mathematik, 2023, 154 : 443 - 484
  • [44] Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems II: efficient algorithms and numerical results
    Gilbert, Alexander D.
    Scheichl, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (01) : 504 - 535
  • [45] Multilevel quasi-Monte Carlo for optimization under uncertainty
    Guth, Philipp A.
    Van Barel, Andreas
    NUMERISCHE MATHEMATIK, 2023, 154 (3-4) : 443 - 484
  • [46] VECTOR MONTE-CARLO ALGORITHMS FOR SOLVING 2ND-ORDER ELLIPTIC EQUATION SYSTEMS AND THE LAME EQUATION
    SABELFELD, KK
    DOKLADY AKADEMII NAUK SSSR, 1982, 262 (05): : 1076 - 1080
  • [47] A Multilevel Monte Carlo Method for High-Dimensional Uncertainty Quantification of Low-Frequency Electromagnetic Devices
    Galetzka, Armin
    Bontinck, Zeger
    Roemer, Ulrich
    Schoeps, Sebastian
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (08)
  • [48] Green's function Monte Carlo algorithms for elliptic problems
    Dimov, IT
    Papancheva, RY
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 63 (06) : 587 - 604
  • [49] Adjoint Sensitivity and Uncertainty Analyses in Monte Carlo Forward Calculations
    Shim, Hyung Jin
    Kim, Chang Hyo
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2011, 48 (12) : 1453 - 1461
  • [50] Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients
    Cliffe, K. A.
    Giles, M. B.
    Scheichl, R.
    Teckentrup, A. L.
    COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 3 - 15