Reliable comparison for power amplifiers nonlinear behavioral modeling based on regression trees and random forest

被引:2
|
作者
Aguila-Torres, Daniel Santiago [1 ]
Alejandro Galaviz-Aguilar, Jose [2 ]
Ricardo Cardenas-Valdez, Jose [1 ]
机构
[1] IT Tijuana, Tecnol Nacl Mexico, Tijuana, Mexico
[2] Tecnol Monterrey, Sch Sci & Engn, Monterrey, Mexico
关键词
regression tree; random forest; digital predistortion; power amplifier; linearization;
D O I
10.1109/ISCAS48785.2022.9937863
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work evaluates the construction of feature extraction nonlinear behavioral models based on Regression Trees and Random Forest techniques. A framework to evaluate the effectiveness with enough-accuracy regressor models are evaluated to aid in the design of a digital predistorter (DPD) for the power amplifier (PA) linearization. The comparison with a conventional memory polynomial model (MPM) and two ensemble learning models is performed to reveal the ability in decision and region identification without overfitting for the Regression Tree and a Random Forest algorithms.
引用
收藏
页码:1527 / 1530
页数:4
相关论文
共 50 条
  • [21] Multi-Section Support Vector Regression-Based Behavioral Modeling of RF GaN Doherty Power Amplifiers
    Qi, Lin
    Yin, Hang
    Chen, Peng
    Cai, Jialin
    Zhu, Xiao-Wei
    Yu, Chao
    Hong, Wei
    2021 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS 2021), 2021,
  • [22] Measurement based modeling of power amplifiers for reliable design of modem communication systems
    Soury, A
    Ngoya, E
    Nébus, JM
    Reveyrand, T
    2003 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2003, : 795 - 798
  • [23] A comparison of random forest variable selection methods for regression modeling of continuous outcomes
    O'Connell, Nathaniel S.
    Jaeger, Byron C.
    Bullock, Garrett S.
    Speiser, Jaime Lynn
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (02)
  • [24] Comparison of Modeling Techniques for Power Amplifiers
    Gotthans, Tomas
    Baudoin, Genevieve
    Mbaye, Amadou
    2013 23RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2013, : 232 - 235
  • [25] Dynamic Behavioral Modeling of Power Amplifiers Using ANFIS-Based Hammerstein
    Zhai, Jianfeng
    Zhou, Jianyi
    Zhang, Lei
    Zhao, Jianing
    Hong, Wei
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2008, 18 (10) : 704 - 706
  • [26] Nonlinear behavioral modeling of power amplifiers using radial-basis function neural networks
    Isaksson, M
    Wisell, D
    Rönnow, D
    2005 IEEE MTT-S International Microwave Symposium, Vols 1-4, 2005, : 1967 - 1970
  • [27] An Optimized Segmented Quasi-Memoryless Nonlinear Behavioral Modeling Approach for RF Power Amplifiers
    Fisher, Paul O.
    Al-Sarawi, Said F.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (01) : 294 - 305
  • [28] Memory polynomial based support vector regression dynamic behavioral model for Doherty power amplifiers
    Wang, Shijie
    King, Justin
    Cai, Jialin
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2022, 35 (04)
  • [29] Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees
    Abedi, Rahebeh
    Costache, Romulus
    Shafizadeh-Moghadam, Hossein
    Pham, Quoc Bao
    GEOCARTO INTERNATIONAL, 2022, 37 (19) : 5479 - 5496
  • [30] Performance Comparison of Support Vector Regression, Random Forest and Multiple Linear Regression to Forecast the Power of Photovoltaic Panels
    Chahboun, Souhaila
    Maaroufi, Mohamed
    PROCEEDINGS OF 2021 9TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2021, : 95 - 98