Reliable comparison for power amplifiers nonlinear behavioral modeling based on regression trees and random forest

被引:2
|
作者
Aguila-Torres, Daniel Santiago [1 ]
Alejandro Galaviz-Aguilar, Jose [2 ]
Ricardo Cardenas-Valdez, Jose [1 ]
机构
[1] IT Tijuana, Tecnol Nacl Mexico, Tijuana, Mexico
[2] Tecnol Monterrey, Sch Sci & Engn, Monterrey, Mexico
关键词
regression tree; random forest; digital predistortion; power amplifier; linearization;
D O I
10.1109/ISCAS48785.2022.9937863
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work evaluates the construction of feature extraction nonlinear behavioral models based on Regression Trees and Random Forest techniques. A framework to evaluate the effectiveness with enough-accuracy regressor models are evaluated to aid in the design of a digital predistorter (DPD) for the power amplifier (PA) linearization. The comparison with a conventional memory polynomial model (MPM) and two ensemble learning models is performed to reveal the ability in decision and region identification without overfitting for the Regression Tree and a Random Forest algorithms.
引用
收藏
页码:1527 / 1530
页数:4
相关论文
共 50 条
  • [41] Behavioral Modeling of Power Amplifiers With Modern Machine Learning Techniques
    Dikmese, Sener
    Anttila, Lauri
    Campo, Pablo Pascual
    Valkama, Mikko
    Renfors, Markku
    2019 IEEE MTT-S INTERNATIONAL MICROWAVE CONFERENCE ON HARDWARE AND SYSTEMS FOR 5G AND BEYOND (IMC-5G), 2019,
  • [42] Behavioral level Modeling of power amplifiers with varying antenna load
    Nielsen, TS
    Tawfik, S
    Larsen, T
    Lindfors, S
    VTC2005-SPRING: 2005 IEEE 61ST VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2005, : 963 - 967
  • [43] Multimodal random forest based tensor regression
    Kaymak, Sertan
    Patras, Ioannis
    IET COMPUTER VISION, 2014, 8 (06) : 650 - 657
  • [44] Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation
    Wang, Feier
    Wang, Yixu
    Zhang, Kai
    Hu, Ming
    Weng, Qin
    Zhang, Huichun
    ENVIRONMENTAL RESEARCH, 2021, 202
  • [45] Hybrid Look-Up-Tables Based Behavioral Model for Dynamic Nonlinear Power Amplifiers
    Dalbah, Ahmad I.
    Hammi, Oualid
    Zerguine, Azzedine
    IEEE ACCESS, 2020, 8 (08): : 53240 - 53249
  • [46] A vector intermodulation analyzer applied to behavioral modeling of nonlinear amplifiers with memory
    Walker, Aaron
    Steer, Michael
    Gard, Kevin G.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (05) : 1991 - 1999
  • [47] Comparison of 2-D Behavioral Models for Modeling and Digital Predistortion of Envelope Tracking Power Amplifiers
    Al-kanan, Haider
    Li, Fu
    Tafuri, Felice Francesco
    2017 IEEE ASIA PACIFIC MICROWAVE CONFERENCE (APMC), 2017, : 999 - 1002
  • [48] Reliable Attribute Selection Based on Random Forest (RASER)
    Noura, Aboudi
    Shili, Hechmi
    Ben Romdhane, Lotfi
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016), 2017, 557 : 11 - 24
  • [49] A comparison of random forest based algorithms: random credal random forest versus oblique random forest
    Carlos J. Mantas
    Javier G. Castellano
    Serafín Moral-García
    Joaquín Abellán
    Soft Computing, 2019, 23 : 10739 - 10754
  • [50] A comparison of random forest based algorithms: random credal random forest versus oblique random forest
    Mantas, Carlos J.
    Castellano, Javier G.
    Moral-Garcia, Serafin
    Abellan, Joaquin
    SOFT COMPUTING, 2019, 23 (21) : 10739 - 10754