Reliable comparison for power amplifiers nonlinear behavioral modeling based on regression trees and random forest

被引:2
|
作者
Aguila-Torres, Daniel Santiago [1 ]
Alejandro Galaviz-Aguilar, Jose [2 ]
Ricardo Cardenas-Valdez, Jose [1 ]
机构
[1] IT Tijuana, Tecnol Nacl Mexico, Tijuana, Mexico
[2] Tecnol Monterrey, Sch Sci & Engn, Monterrey, Mexico
关键词
regression tree; random forest; digital predistortion; power amplifier; linearization;
D O I
10.1109/ISCAS48785.2022.9937863
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work evaluates the construction of feature extraction nonlinear behavioral models based on Regression Trees and Random Forest techniques. A framework to evaluate the effectiveness with enough-accuracy regressor models are evaluated to aid in the design of a digital predistorter (DPD) for the power amplifier (PA) linearization. The comparison with a conventional memory polynomial model (MPM) and two ensemble learning models is performed to reveal the ability in decision and region identification without overfitting for the Regression Tree and a Random Forest algorithms.
引用
收藏
页码:1527 / 1530
页数:4
相关论文
共 50 条
  • [31] A comparison of random forest regression and multiple linear regression for prediction in neuroscience
    Smith, Paul F.
    Ganesh, Siva
    Liu, Ping
    JOURNAL OF NEUROSCIENCE METHODS, 2013, 220 (01) : 85 - 91
  • [32] Nonlinear Behavioral Modeling of W-CDMA InGaP HBT Power Amplifiers for Predicting Spectral Regrowth
    Kim, Dohyung
    Kim, Jaekwon
    Burm, Jinwook
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (04) : 2165 - 2170
  • [33] Self-Attention Based Neural Network for Behavioral Modeling and Predistortion of Power Amplifiers
    Xiong, Zeren
    Guo, Zhiheng
    Wang, Xijun
    Chen, Xiang
    2023 INTERNATIONAL CONFERENCE ON FUTURE COMMUNICATIONS AND NETWORKS, FCN, 2023,
  • [34] Temperature Compensation-Based Behavioral Modeling for Digital Predistortion of RF Power Amplifiers
    Gotthans, Tomas
    Marsalek, Roman
    Gotthans, Jakub
    2019 IEEE 19TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2019), 2019,
  • [35] Local inverse modeling and predistortion of nonlinear power amplifiers
    Ding, Yuanming
    Sun, Lianming
    Pan, Chengsheng
    Li, Zhengjie
    ICIC Express Letters, 2011, 5 (9 B): : 3389 - 3394
  • [36] Mixture of Experts Approach for Behavioral Modeling of RF Power Amplifiers
    Brihuega, Alberto
    Abdelaziz, Mahmoud
    Anttila, Lauri
    Li, Yue
    Zhu, Anding
    Valkama, Mikko
    2021 IEEE TOPICAL CONFERENCE ON RF/MICROWAVE POWER AMPLIFIERS FOR RADIO AND WIRELESS APPLICATIONS (PAWR), 2021, : 1 - 3
  • [37] Behavioral Modeling and Predistortion of Power Amplifiers Under Sparsity Hypothesis
    Reina-Tosina, Javier
    Allegue-Martinez, Michel
    Crespo-Cadenas, Carlos
    Yu, Chao
    Cruces, Sergio
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (02) : 745 - 753
  • [38] Behavioral Modeling of Power Amplifiers With Dynamic Fuzzy Neural Networks
    Zhai, Jianfeng
    Zhou, Jianyi
    Zhang, Lei
    Hong, Wei
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (09) : 528 - 530
  • [39] Extreme Learning Machine for the Behavioral Modeling of RF Power Amplifiers
    Zhang, Cheng-Yu
    Zhu, Yuan-Yuan
    Cheng, Qian-Fu
    Fu, Hai-Peng
    Ma, Jian-Guo
    Zhang, Qi-Jun
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2017, : 554 - 557
  • [40] An improved behavioral modeling technique for high power amplifiers with memory
    Le Gallou, N
    Ngoya, E
    Buret, H
    Barataud, D
    Nebus, JM
    2001 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2001, : 983 - 986