Nonlinear behavioral modeling of power amplifiers using radial-basis function neural networks

被引:8
|
作者
Isaksson, M [1 ]
Wisell, D
Rönnow, D
机构
[1] Univ Gavle, SE-80176 Gavle, Sweden
[2] Ericsson Telecom AB, SE-80006 Gavle, Sweden
关键词
modeling; neural networks; nonlinear distortion; power amplifiers; radio transmitter;
D O I
10.1109/MWSYM.2005.1517128
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A radial-basis function neural network (RBFNN) is proposed for modeling the dynamic nonlinear behavior of RF power amplifiers. In the model the signal's envelope is used. The model requires less training than a model using both IQ-data. Sampled input and output signals from a power amplifier for 3G were used in the identification and validation. The RBFNN is compared with a parallel Hammerstein model. For a memory depth of one sample the RBFNN gives a better model, in- and out-of-band; for three samples the RBFNN reduces the in-band error more while the Hammerstein model reduces the error out-of-band more.
引用
收藏
页码:1967 / 1970
页数:4
相关论文
共 50 条
  • [1] Nonlinear Modeling of GaN Doherty Power Amplifiers Using Radial-Basis Function Neural Networks
    Tong, Fu
    Liu, Haiwen
    Li, Xiaohua
    Li, Wenming
    Zhang, Qijun
    [J]. APMC: 2008 ASIA PACIFIC MICROWAVE CONFERENCE (APMC 2008), VOLS 1-5, 2008, : 2535 - +
  • [2] Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks
    Isaksson, M
    Wisell, D
    Rönnow, D
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (11) : 3422 - 3428
  • [3] Behavioral Modeling of Nonlinear Power Amplifiers Using Spiking Neural Networks
    Wang, Siqi
    Ferreira, Pietro Maris
    Benlarbi-Delai, Aziz
    [J]. 2022 20TH IEEE INTERREGIONAL NEWCAS CONFERENCE (NEWCAS), 2022, : 495 - 499
  • [4] Design and Modeling of RF Power Amplifiers with Radial Basis Function Artificial Neural Networks
    Zirak, Ali Reza
    Roshani, Sobhan
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (06) : 227 - 231
  • [5] Searching large image databases using radial-basis function neural networks
    Wood, MEJ
    Campbell, NW
    Thomas, BT
    [J]. SIXTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ITS APPLICATIONS, VOL 1, 1997, (443): : 116 - 120
  • [6] On the Kernel Widths in Radial-Basis Function Networks
    Nabil Benoudjit
    Michel Verleysen
    [J]. Neural Processing Letters, 2003, 18 : 139 - 154
  • [7] Nonlinear function approximation using radial basis function neural networks
    Husain, H
    Khalid, M
    Yusof, R
    [J]. 2002 STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT, PROCEEDINGS: GLOBALIZING RESEARCH AND DEVELOPMENT IN ELECTRICAL AND ELECTRONICS ENGINEERING, 2002, : 326 - 329
  • [8] On the kernel widths in radial-basis function networks
    Benoudjit, N
    Verleysen, M
    [J]. NEURAL PROCESSING LETTERS, 2003, 18 (02) : 139 - 154
  • [9] NONLINEAR BEHAVIORAL OF GaN DOHERTY POWER AMPLIFIERS USING NEURAL MODELING
    Liu, Haiwen
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2010, 52 (02) : 307 - 309
  • [10] Prediction of Medical Examination Results Using Radial-Basis Function Networks
    Jang, Gil-Jin
    Kim, Minho
    Kim, Young-Won
    Choi, Jaehun
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2016,