The Douglas-Rachford algorithm for the case of the sphere and the line

被引:24
|
作者
Benoist, Joel [1 ]
机构
[1] Univ Limoges, Lab XLIM, UMR CNRS 7252, F-87060 Limoges, France
关键词
Hilbert space; Douglas-Rachford algorithm; Global convergence; Lyapunov function;
D O I
10.1007/s10898-015-0296-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we solve a conjecture proposed by Borwein and Sims (Fixed-point algorithms for inverse problems in science and engineering, Springer optimization and its applications, 2011) in a Hilbert space setting. For the simple non-convex example of the sphere and the line, the sequence of Douglas-Rachford iterates converges in norm to a point of the intersection except when the initial value belongs to the hyperplane of symmetry.
引用
收藏
页码:363 / 380
页数:18
相关论文
共 50 条
  • [1] The Douglas–Rachford algorithm for the case of the sphere and the line
    Joël Benoist
    [J]. Journal of Global Optimization, 2015, 63 : 363 - 380
  • [2] On the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. MATHEMATICAL PROGRAMMING, 2017, 164 (1-2) : 263 - 284
  • [3] A parameterized Douglas-Rachford algorithm
    Wang, Dongying
    Wang, Xianfu
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 839 - 869
  • [4] The Douglas-Rachford algorithm in the affine-convex case
    Bauschke, Heinz H.
    Dao, Minh N.
    Moursi, Walaa M.
    [J]. OPERATIONS RESEARCH LETTERS, 2016, 44 (03) : 379 - 382
  • [5] On the local convergence of the Douglas-Rachford algorithm
    Bauschke, H. H.
    Noll, D.
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (06) : 589 - 600
  • [6] The Douglas-Rachford algorithm for a hyperplane and a doubleton
    Bauschke, Heinz H.
    Dao, Minh N.
    Lindstrom, Scott B.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 74 (01) : 79 - 93
  • [7] On the order of the operators in the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. OPTIMIZATION LETTERS, 2016, 10 (03) : 447 - 455
  • [8] The Douglas-Rachford Algorithm in the Absence of Convexity
    Borwein, Jonathan M.
    Sims, Brailey
    [J]. FIXED-POINT ALGORITHMS FOR INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 49 : 93 - 109
  • [9] A convergent relaxation of the Douglas-Rachford algorithm
    Nguyen Hieu Thao
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (03) : 841 - 863
  • [10] The cyclic Douglas-Rachford algorithm with r-sets-Douglas-Rachford operators
    Aragon Artacho, Francisco J.
    Censor, Yair
    Gibali, Aviv
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (04): : 875 - 889