The Douglas-Rachford algorithm for the case of the sphere and the line

被引:24
|
作者
Benoist, Joel [1 ]
机构
[1] Univ Limoges, Lab XLIM, UMR CNRS 7252, F-87060 Limoges, France
关键词
Hilbert space; Douglas-Rachford algorithm; Global convergence; Lyapunov function;
D O I
10.1007/s10898-015-0296-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we solve a conjecture proposed by Borwein and Sims (Fixed-point algorithms for inverse problems in science and engineering, Springer optimization and its applications, 2011) in a Hilbert space setting. For the simple non-convex example of the sphere and the line, the sequence of Douglas-Rachford iterates converges in norm to a point of the intersection except when the initial value belongs to the hyperplane of symmetry.
引用
收藏
页码:363 / 380
页数:18
相关论文
共 50 条
  • [21] Higher-dimensional wavelets and the Douglas-Rachford algorithm
    Franklin, David
    Hogan, Jeffrey A.
    Tam, Matthew
    [J]. 2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [22] Circumcentering the Douglas-Rachford method
    Behling, Roger
    Cruz, Jose Yunier Bello
    Santos, Luiz-Rafael
    [J]. NUMERICAL ALGORITHMS, 2018, 78 (03) : 759 - 776
  • [23] On the Douglas-Rachford Algorithm for Solving Possibly Inconsistent Optimization Problems
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2024, 49 (01) : 58 - 77
  • [24] ADAPTIVE DOUGLAS-RACHFORD SPLITTING ALGORITHM FOR THE SUM OF TWO OPERATORS
    Dao, Minh N.
    Phan, Hung M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2697 - 2724
  • [25] On the Range of the Douglas-Rachford Operator
    Bauschke, Heinz H.
    Hare, Warren L.
    Moursi, Walaa M.
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (03) : 884 - 897
  • [26] THE DOUGLAS-RACHFORD ALGORITHM WITH NEW ERROR SEQUENCES FOR AN INCLUSION PROBLEM
    Wang, Yamin
    Wang, Fenghui
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [27] Linear convergence of the generalized Douglas-Rachford algorithm for feasibility problems
    Dao, Minh N.
    Phan, Hung M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 443 - 474
  • [28] THE DOUGLAS-RACHFORD ALGORITHM FOR TWO (NOT NECESSARILY INTERSECTING) AFFINE SUBSPACES
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 968 - 985
  • [29] Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage
    Setzer, Simon
    [J]. SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2009, 5567 : 464 - 476
  • [30] ON WEAK CONVERGENCE OF THE DOUGLAS-RACHFORD METHOD
    Svaiter, B. F.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (01) : 280 - 287