ADAPTIVE DOUGLAS-RACHFORD SPLITTING ALGORITHM FOR THE SUM OF TWO OPERATORS

被引:23
|
作者
Dao, Minh N. [1 ]
Phan, Hung M. [2 ]
机构
[1] Univ Newcastle, CARMA, Callaghan, NSW 2308, Australia
[2] Univ Massachusetts Lowell, Dept Math Sci, Kennedy Coll Sci, Lowell, MA 01854 USA
基金
澳大利亚研究理事会;
关键词
Douglas-Rachford algorithm; Fejer monotonicity; global convergence; inclusion problem; linear convergence; Lipschitz continuity; strong monotonicity; weak monotonicity; CONVEX FEASIBILITY PROBLEMS; PROXIMAL POINT ALGORITHM; LINEAR CONVERGENCE; FINITE CONVERGENCE; REGULARITY; PROJECTION; SETS;
D O I
10.1137/18M121160X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Douglas-Rachford algorithm is a classical and powerful splitting method for minimizing the sum of two convex functions and, more generally, finding a zero of the sum of two maximally monotone operators. Although this algorithm is well understood when the involved operators are monotone or strongly monotone, the convergence theory for weakly monotone settings is far from being complete. In this paper, we propose an adaptive Douglas-Rachford splitting algorithm for the sum of two operators, one of which is strongly monotone while the other one is weakly monotone. With appropriately chosen parameters, the algorithm converges globally to a fixed point from which we derive a solution of the problem. When one operator is Lipschitz continuous, we prove global linear convergence, which sharpens recent known results.
引用
收藏
页码:2697 / 2724
页数:28
相关论文
共 50 条
  • [1] On the order of the operators in the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. OPTIMIZATION LETTERS, 2016, 10 (03) : 447 - 455
  • [2] ADAPTIVE DOUGLAS-RACHFORD SPLITTING ALGORITHM FROM A YOSIDA APPROXIMATION STANDPOINT
    Liu, Zihan
    Ramchandran, Kannan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 1971 - 1998
  • [3] The cyclic Douglas-Rachford algorithm with r-sets-Douglas-Rachford operators
    Aragon Artacho, Francisco J.
    Censor, Yair
    Gibali, Aviv
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (04): : 875 - 889
  • [4] A parameterized Douglas-Rachford splitting algorithm for nonconvex optimization
    Bian, Fengmiao
    Zhang, Xiaoqun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 410
  • [5] On the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. MATHEMATICAL PROGRAMMING, 2017, 164 (1-2) : 263 - 284
  • [6] ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS
    ECKSTEIN, J
    BERTSEKAS, DP
    [J]. MATHEMATICAL PROGRAMMING, 1992, 55 (03) : 293 - 318
  • [7] Douglas-Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator
    Moursi, Walaa M.
    Vandenberghe, Lieven
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 183 (01) : 179 - 198
  • [8] ANDERSON ACCELERATED DOUGLAS-RACHFORD SPLITTING
    Fu, Anqi
    Zhang, Junzi
    Boyd, Stephen
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : A3560 - A3583
  • [9] Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage
    Setzer, Simon
    [J]. SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2009, 5567 : 464 - 476
  • [10] A parameterized Douglas-Rachford algorithm
    Wang, Dongying
    Wang, Xianfu
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 839 - 869