ADAPTIVE DOUGLAS-RACHFORD SPLITTING ALGORITHM FOR THE SUM OF TWO OPERATORS

被引:23
|
作者
Dao, Minh N. [1 ]
Phan, Hung M. [2 ]
机构
[1] Univ Newcastle, CARMA, Callaghan, NSW 2308, Australia
[2] Univ Massachusetts Lowell, Dept Math Sci, Kennedy Coll Sci, Lowell, MA 01854 USA
基金
澳大利亚研究理事会;
关键词
Douglas-Rachford algorithm; Fejer monotonicity; global convergence; inclusion problem; linear convergence; Lipschitz continuity; strong monotonicity; weak monotonicity; CONVEX FEASIBILITY PROBLEMS; PROXIMAL POINT ALGORITHM; LINEAR CONVERGENCE; FINITE CONVERGENCE; REGULARITY; PROJECTION; SETS;
D O I
10.1137/18M121160X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Douglas-Rachford algorithm is a classical and powerful splitting method for minimizing the sum of two convex functions and, more generally, finding a zero of the sum of two maximally monotone operators. Although this algorithm is well understood when the involved operators are monotone or strongly monotone, the convergence theory for weakly monotone settings is far from being complete. In this paper, we propose an adaptive Douglas-Rachford splitting algorithm for the sum of two operators, one of which is strongly monotone while the other one is weakly monotone. With appropriately chosen parameters, the algorithm converges globally to a fixed point from which we derive a solution of the problem. When one operator is Lipschitz continuous, we prove global linear convergence, which sharpens recent known results.
引用
收藏
页码:2697 / 2724
页数:28
相关论文
共 50 条
  • [31] Affine Nonexpansive Operators, Attouch-Thera Duality and the Douglas-Rachford Algorithm
    Bauschke, Heinz H.
    Lukens, Brett
    Moursi, Walaa M.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2017, 25 (03) : 481 - 505
  • [32] THE DOUGLAS-RACHFORD ALGORITHM CONVERGES ONLY WEAKLY
    Bui, Minh N.
    Combettes, Patrick L.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (02) : 1118 - 1120
  • [33] Douglas-Rachford Splitting: Complexity Estimates and Accelerated Variants
    Patrinos, Panagiotis
    Stella, Lorenzo
    Bemporad, Alberto
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 4234 - 4239
  • [34] A Douglas-Rachford splitting method for solving equilibrium problems
    Briceno-Arias, Luis M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (16) : 6053 - 6059
  • [35] Inertial Douglas-Rachford splitting for monotone inclusion problems
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    Hendrich, Christopher
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 472 - 487
  • [36] The Douglas-Rachford algorithm for the case of the sphere and the line
    Benoist, Joel
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2015, 63 (02) : 363 - 380
  • [37] OPTIMAL CONTROL DUALITY AND THE DOUGLAS-RACHFORD ALGORITHM
    Burachik, Regina s.
    Caldwell, Bethany i.
    Kaya, C. yalcin
    Moursi, Walaa m.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (01) : 680 - 698
  • [38] Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting
    Ouyang, Wenqing
    Peng, Yue
    Yao, Yuxin
    Zhang, Juyong
    Deng, Bailin
    [J]. COMPUTER GRAPHICS FORUM, 2020, 39 (05) : 221 - 239
  • [39] A second-order adaptive Douglas-Rachford dynamic method for maximal α-monotone operators
    Zhu, Ming
    Hu, Rong
    Fang, Ya-Ping
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (02)
  • [40] Douglas-Rachford splitting algorithm for solving state-dependent maximal monotone inclusions
    Adly, S.
    Le, B. K.
    [J]. OPTIMIZATION LETTERS, 2021, 15 (08) : 2861 - 2878