Douglas-Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator

被引:17
|
作者
Moursi, Walaa M. [1 ,2 ]
Vandenberghe, Lieven [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Mansoura Univ, Fac Sci, Math Dept, Mansoura 35516, Egypt
[3] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
关键词
Douglas-Rachford algorithm; Linear convergence; Lipschitz continuous mapping; Skew-symmetric operator; Strongly convex function; Strongly monotone operator; LINEAR CONVERGENCE; ALGORITHMS; INCLUSIONS;
D O I
10.1007/s10957-019-01517-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Douglas-Rachford method is a popular splitting technique for finding a zero of the sum of two subdifferential operators of proper, closed, and convex functions and, more generally, two maximally monotone operators. Recent results concerned with linear rates of convergence of the method require additional properties of the underlying monotone operators, such as strong monotonicity and cocoercivity. In this paper, we study the case, when one operator is Lipschitz continuous but not necessarily a subdifferential operator and the other operator is strongly monotone. This situation arises in optimization methods based on primal-dual approaches. We provide new linear convergence results in this setting.
引用
收藏
页码:179 / 198
页数:20
相关论文
共 50 条
  • [1] Douglas–Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator
    Walaa M. Moursi
    Lieven Vandenberghe
    [J]. Journal of Optimization Theory and Applications, 2019, 183 : 179 - 198
  • [2] Shadow Douglas-Rachford Splitting for Monotone Inclusions
    Csetnek, Ernoe Robert
    Malitsky, Yura
    Tam, Matthew K.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 665 - 678
  • [3] Inertial Douglas-Rachford splitting for monotone inclusion problems
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    Hendrich, Christopher
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 472 - 487
  • [4] On the convergence rate of Douglas-Rachford operator splitting method
    He, Bingsheng
    Yuan, Xiaoming
    [J]. MATHEMATICAL PROGRAMMING, 2015, 153 (02) : 715 - 722
  • [5] Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions
    Cevher, Volkan
    Vu, Bang Cong
    Yurtsever, Alp
    [J]. LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 149 - 179
  • [6] ADAPTIVE DOUGLAS-RACHFORD SPLITTING ALGORITHM FOR THE SUM OF TWO OPERATORS
    Dao, Minh N.
    Phan, Hung M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2697 - 2724
  • [7] On the Range of the Douglas-Rachford Operator
    Bauschke, Heinz H.
    Hare, Warren L.
    Moursi, Walaa M.
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (03) : 884 - 897
  • [8] Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions
    Fan, Jingjing
    Qin, Xiaolong
    Tan, Bing
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (14) : 1627 - 1644
  • [9] ANDERSON ACCELERATED DOUGLAS-RACHFORD SPLITTING
    Fu, Anqi
    Zhang, Junzi
    Boyd, Stephen
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : A3560 - A3583
  • [10] On the minimal displacement vector of the Douglas-Rachford operator
    Banjac, Goran
    [J]. OPERATIONS RESEARCH LETTERS, 2021, 49 (02) : 197 - 200