Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions

被引:6
|
作者
Cevher, Volkan [1 ]
Vu, Bang Cong [1 ]
Yurtsever, Alp [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
来源
关键词
Monotone inclusion; Monotone operator; Operator splitting; Cocoercive; Forward backward algorithm; Composite operator; Duality; Primal-dual algorithm; SURE CONVERGENCE; ALGORITHM;
D O I
10.1007/978-3-319-97478-1_7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a stochastic Forward-Douglas-Rachford Splitting framework for finding a zero point of the sum of three maximally monotone operators, one of which is cocoercive, in a real separable Hilbert space. We characterize the rate of convergence in expectation for strongly monotone operators. We further provide guidance on step-size sequence selection that achieve this rate, even when the strong convexity parameter is unknown.
引用
收藏
页码:149 / 179
页数:31
相关论文
共 50 条
  • [1] Shadow Douglas-Rachford Splitting for Monotone Inclusions
    Csetnek, Ernoe Robert
    Malitsky, Yura
    Tam, Matthew K.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 665 - 678
  • [2] Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions
    Fan, Jingjing
    Qin, Xiaolong
    Tan, Bing
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (14) : 1627 - 1644
  • [3] An accelerated variance reducing stochastic method with Douglas-Rachford splitting
    Jingchang Liu
    Linli Xu
    Shuheng Shen
    Qing Ling
    [J]. Machine Learning, 2019, 108 : 859 - 878
  • [4] Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions
    Briceno-Arias, Luis M.
    [J]. OPTIMIZATION, 2015, 64 (05) : 1239 - 1261
  • [5] Inertial Douglas-Rachford splitting for monotone inclusion problems
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    Hendrich, Christopher
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 472 - 487
  • [6] Douglas-Rachford splitting algorithm for solving state-dependent maximal monotone inclusions
    Adly, S.
    Le, B. K.
    [J]. OPTIMIZATION LETTERS, 2021, 15 (08) : 2861 - 2878
  • [7] An accelerated variance reducing stochastic method with Douglas-Rachford splitting
    Liu, Jingchang
    Xu, Linli
    Shen, Shuheng
    Ling, Qing
    [J]. MACHINE LEARNING, 2019, 108 (05) : 859 - 878
  • [8] Shadow Douglas–Rachford Splitting for Monotone Inclusions
    Ernö Robert Csetnek
    Yura Malitsky
    Matthew K. Tam
    [J]. Applied Mathematics & Optimization, 2019, 80 : 665 - 678
  • [9] Douglas-Rachford splitting method for semidefinite programming
    Dong Y.
    [J]. Journal of Applied Mathematics and Computing, 2016, 51 (1-2) : 569 - 591
  • [10] Weak and Strong Convergence of Split Douglas-Rachford Algorithms for Monotone Inclusions
    Lv, Tianqi
    Xu, Hong-Kun
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (03) : 805 - 817