Weak and Strong Convergence of Split Douglas-Rachford Algorithms for Monotone Inclusions

被引:0
|
作者
Lv, Tianqi [1 ]
Xu, Hong-Kun [1 ]
机构
[1] Hangzhou Dianzi Univ, Dept Math, Sch Sci, Hangzhou 310018, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Monotone inclusion; nonexpansive mapping; fixed-point; primal-dual splitting; split Douglas-Rachford; nonstandard metric; projection; FIXED-POINTS;
D O I
10.37193/CJM.2024.03.17
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned in this paper with the convergence analysis of the primal-dual splitting (PDS) and the split Douglas-Rachford (SDR) algorithms for monotone inclusions by using an operator-oriented approach. We shall show that both PDS and SDR algorithms can be driven by a (firmly) nonexpansive mapping in a product Hilbert space. We are then able to apply the Krasnoselskii-Mann and Halpern fixed point algorithms to PDS and SDR to get weakly and strongly convergent algorithms for finding solutions of the primal and dual monotone inclusions. Moreover, an additional projection technique is used to derive strong convergence of a modified SDR algorithm.
引用
收藏
页码:805 / 817
页数:13
相关论文
共 50 条
  • [1] Shadow Douglas-Rachford Splitting for Monotone Inclusions
    Csetnek, Ernoe Robert
    Malitsky, Yura
    Tam, Matthew K.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 665 - 678
  • [2] Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions
    Fan, Jingjing
    Qin, Xiaolong
    Tan, Bing
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (14) : 1627 - 1644
  • [3] ON WEAK CONVERGENCE OF THE DOUGLAS-RACHFORD METHOD
    Svaiter, B. F.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (01) : 280 - 287
  • [4] Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions
    Cevher, Volkan
    Vu, Bang Cong
    Yurtsever, Alp
    [J]. LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 149 - 179
  • [5] A simplified proof of weak convergence in Douglas-Rachford method
    Svaiter, Benar F.
    [J]. OPERATIONS RESEARCH LETTERS, 2019, 47 (04) : 291 - 293
  • [6] On the local convergence of the Douglas-Rachford algorithm
    Bauschke, H. H.
    Noll, D.
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (06) : 589 - 600
  • [7] Douglas-Rachford splitting algorithm for solving state-dependent maximal monotone inclusions
    Adly, S.
    Le, B. K.
    [J]. OPTIMIZATION LETTERS, 2021, 15 (08) : 2861 - 2878
  • [8] Local Linear Convergence of the ADMM/Douglas-Rachford Algorithms without Strong Convexity and Application to Statistical Imaging
    Aspelmeier, Timo
    Charitha, C.
    Luke, D. Russell
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (02): : 842 - 868
  • [9] CONVERGENCE ANALYSIS OF THE RELAXED DOUGLAS-RACHFORD ALGORITHM
    Luke, D. Russell
    Martins, Anna-Lena
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 542 - 584
  • [10] SPLIT-DOUGLAS-RACHFORD ALGORITHM FOR COMPOSITE MONOTONE INCLUSIONS AND SPLIT-ADMM
    Briceno-Arias, Luis M.
    Roldan, Fernando
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) : 2987 - 3013