On the local convergence of the Douglas-Rachford algorithm

被引:31
|
作者
Bauschke, H. H. [1 ]
Noll, D. [2 ]
机构
[1] Univ British Columbia, Kelowna, BC, Canada
[2] Inst Math Toulouse, Toulouse, France
基金
加拿大自然科学与工程研究理事会;
关键词
Nonconvex feasibility problem; Fixed-point; Discrete dynamical system; Convergence; Stability;
D O I
10.1007/s00013-014-0652-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the Douglas-Rachford algorithm to solve the feasibility problem for two closed sets A,B in . We prove its local convergence to a fixed point when A,B are finite unions of convex sets. We also show that for more general nonconvex sets the scheme may fail to converge and start to cycle, and may then even fail to solve the feasibility problem.
引用
收藏
页码:589 / 600
页数:12
相关论文
共 50 条
  • [1] CONVERGENCE ANALYSIS OF THE RELAXED DOUGLAS-RACHFORD ALGORITHM
    Luke, D. Russell
    Martins, Anna-Lena
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 542 - 584
  • [2] On the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. MATHEMATICAL PROGRAMMING, 2017, 164 (1-2) : 263 - 284
  • [3] On the local convergence of the Douglas–Rachford algorithm
    H. H. Bauschke
    D. Noll
    [J]. Archiv der Mathematik, 2014, 102 : 589 - 600
  • [4] ON WEAK CONVERGENCE OF THE DOUGLAS-RACHFORD METHOD
    Svaiter, B. F.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (01) : 280 - 287
  • [5] A parameterized Douglas-Rachford algorithm
    Wang, Dongying
    Wang, Xianfu
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 839 - 869
  • [6] Strong convergence of the viscosity douglas-rachford algorithm for inclusion problems
    Wang, Yamin
    Zhang, Haixia
    [J]. Applied Set-Valued Analysis and Optimization, 2020, 2 (03): : 339 - 349
  • [7] Linear convergence of the generalized Douglas-Rachford algorithm for feasibility problems
    Dao, Minh N.
    Phan, Hung M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 443 - 474
  • [8] On the order of the operators in the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. OPTIMIZATION LETTERS, 2016, 10 (03) : 447 - 455
  • [9] Local Convergence Properties of Douglas-Rachford and Alternating Direction Method of Multipliers
    Liang, Jingwei
    Fadili, Jalal
    Peyre, Gabriel
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 172 (03) : 874 - 913
  • [10] Local Linear Convergence of Douglas-Rachford for Linear Programming: a Probabilistic Analysis
    Faust, Oisin
    Fawzi, Hamza
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,