On the Douglas-Rachford algorithm

被引:44
|
作者
Bauschke, Heinz H. [1 ]
Moursi, Walaa M. [1 ,2 ]
机构
[1] Univ British Columbia, Math, Kelowna, BC V1V 1V7, Canada
[2] Mansoura Univ, Math Dept, Fac Sci, Mansoura 35516, Egypt
基金
加拿大自然科学与工程研究理事会;
关键词
Attouch-Thera duality; Douglas-Rachford algorithm; Inconsistent case; Maximally monotone operator; Nonexpansive mapping; Paramonotone operator; Sum problem; Weak convergence; MAXIMAL MONOTONE-OPERATORS; PROJECTIVE SPLITTING METHODS; FEASIBILITY PROBLEMS; LINEAR-OPERATORS; HILBERT-SPACE; SUM; CONVERGENCE; CONSTRUCTION; OPTIMIZATION; SUBSPACES;
D O I
10.1007/s10107-016-1086-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Douglas-Rachford algorithm is a very popular splitting technique for finding a zero of the sum of two maximally monotone operators. The behaviour of the algorithm remains mysterious in the general inconsistent case, i.e., when the sum problem has no zeros. However, more than a decade ago, it was shown that in the (possibly inconsistent) convex feasibility setting, the shadow sequence remains bounded and its weak cluster points solve a best approximation problem. In this paper, we advance the understanding of the inconsistent case significantly by providing a complete proof of the full weak convergence in the convex feasibility setting. In fact, a more general sufficient condition for the weak convergence in the general case is presented. Our proof relies on a new convergence principle for Fej,r monotone sequences. Numerous examples illustrate our results.
引用
收藏
页码:263 / 284
页数:22
相关论文
共 50 条
  • [1] A parameterized Douglas-Rachford algorithm
    Wang, Dongying
    Wang, Xianfu
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 839 - 869
  • [2] On the local convergence of the Douglas-Rachford algorithm
    Bauschke, H. H.
    Noll, D.
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (06) : 589 - 600
  • [3] The Douglas-Rachford algorithm for a hyperplane and a doubleton
    Bauschke, Heinz H.
    Dao, Minh N.
    Lindstrom, Scott B.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 74 (01) : 79 - 93
  • [4] On the order of the operators in the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. OPTIMIZATION LETTERS, 2016, 10 (03) : 447 - 455
  • [5] The Douglas-Rachford Algorithm in the Absence of Convexity
    Borwein, Jonathan M.
    Sims, Brailey
    [J]. FIXED-POINT ALGORITHMS FOR INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 49 : 93 - 109
  • [6] A convergent relaxation of the Douglas-Rachford algorithm
    Nguyen Hieu Thao
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (03) : 841 - 863
  • [7] The cyclic Douglas-Rachford algorithm with r-sets-Douglas-Rachford operators
    Aragon Artacho, Francisco J.
    Censor, Yair
    Gibali, Aviv
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (04): : 875 - 889
  • [8] CONVERGENCE ANALYSIS OF THE RELAXED DOUGLAS-RACHFORD ALGORITHM
    Luke, D. Russell
    Martins, Anna-Lena
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 542 - 584
  • [9] THE DOUGLAS-RACHFORD ALGORITHM CONVERGES ONLY WEAKLY
    Bui, Minh N.
    Combettes, Patrick L.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (02) : 1118 - 1120
  • [10] OPTIMAL CONTROL DUALITY AND THE DOUGLAS-RACHFORD ALGORITHM
    Burachik, Regina S.
    Caldwell, Bethany I.
    Kaya, C. Yalcin
    Moursi, Walaa M.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (01) : 680 - 698