On the Douglas-Rachford algorithm

被引:44
|
作者
Bauschke, Heinz H. [1 ]
Moursi, Walaa M. [1 ,2 ]
机构
[1] Univ British Columbia, Math, Kelowna, BC V1V 1V7, Canada
[2] Mansoura Univ, Math Dept, Fac Sci, Mansoura 35516, Egypt
基金
加拿大自然科学与工程研究理事会;
关键词
Attouch-Thera duality; Douglas-Rachford algorithm; Inconsistent case; Maximally monotone operator; Nonexpansive mapping; Paramonotone operator; Sum problem; Weak convergence; MAXIMAL MONOTONE-OPERATORS; PROJECTIVE SPLITTING METHODS; FEASIBILITY PROBLEMS; LINEAR-OPERATORS; HILBERT-SPACE; SUM; CONVERGENCE; CONSTRUCTION; OPTIMIZATION; SUBSPACES;
D O I
10.1007/s10107-016-1086-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Douglas-Rachford algorithm is a very popular splitting technique for finding a zero of the sum of two maximally monotone operators. The behaviour of the algorithm remains mysterious in the general inconsistent case, i.e., when the sum problem has no zeros. However, more than a decade ago, it was shown that in the (possibly inconsistent) convex feasibility setting, the shadow sequence remains bounded and its weak cluster points solve a best approximation problem. In this paper, we advance the understanding of the inconsistent case significantly by providing a complete proof of the full weak convergence in the convex feasibility setting. In fact, a more general sufficient condition for the weak convergence in the general case is presented. Our proof relies on a new convergence principle for Fej,r monotone sequences. Numerous examples illustrate our results.
引用
收藏
页码:263 / 284
页数:22
相关论文
共 50 条
  • [31] ANDERSON ACCELERATED DOUGLAS-RACHFORD SPLITTING
    Fu, Anqi
    Zhang, Junzi
    Boyd, Stephen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : A3560 - A3583
  • [32] A Cyclic Douglas-Rachford Iteration Scheme
    Borwein, Jonathan M.
    Tam, Matthew K.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (01) : 1 - 29
  • [33] SURVEY: SIXTY YEARS OF DOUGLAS-RACHFORD
    LINDSTROM, S. C. O. T. T. B.
    SIMS, B. R. A. I. L. E. Y.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (03) : 333 - 370
  • [34] Proximal Point Algorithm, Douglas-Rachford Algorithm and Alternating Projections: A Case Study
    Bauschke, Heinz H.
    Dao, Minh N.
    Noll, Dominikus
    Phan, Hung M.
    JOURNAL OF CONVEX ANALYSIS, 2016, 23 (01) : 237 - 261
  • [35] Douglas-Rachford algorithm for magnetorelaxometry imaging using random and deterministic activations
    Haltmeier, Markus
    Zangerl, Gerhard
    Schier, Peter
    Aumgarten, Daniel B.
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2019, 60 : S63 - S78
  • [36] Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions
    Fan, Jingjing
    Qin, Xiaolong
    Tan, Bing
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (14) : 1627 - 1644
  • [37] Shadow Douglas-Rachford Splitting for Monotone Inclusions
    Csetnek, Ernoe Robert
    Malitsky, Yura
    Tam, Matthew K.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 665 - 678
  • [38] Semi-implicit relaxed Douglas-Rachford algorithm (sDR) for ptychography
    Minh Pham
    Rana, Arjun
    Miao, Jianwei
    Osher, Stanley
    OPTICS EXPRESS, 2019, 27 (22) : 31246 - 31260
  • [39] On the minimal displacement vector of the Douglas-Rachford operator
    Banjac, Goran
    OPERATIONS RESEARCH LETTERS, 2021, 49 (02) : 197 - 200
  • [40] ADAPTIVE DOUGLAS-RACHFORD SPLITTING ALGORITHM FROM A YOSIDA APPROXIMATION STANDPOINT
    Liu, Zihan
    Ramchandran, Kannan
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 1971 - 1998