SURVEY: SIXTY YEARS OF DOUGLAS-RACHFORD

被引:10
|
作者
LINDSTROM, S. C. O. T. T. B. [1 ]
SIMS, B. R. A. I. L. E. Y. [1 ]
机构
[1] Univ Newcastle, Callaghan, NSW, Australia
关键词
Douglas-Rachford; feasibility; projection algorithms; iterative methods; discrete dynamical systems; PROJECTIVE SPLITTING METHODS; CONVEX FEASIBILITY PROBLEMS; PROXIMAL POINT ALGORITHM; LINEAR CONVERGENCE; ALTERNATING PROJECTIONS; PHASE RETRIEVAL; FINITE CONVERGENCE; PARTIAL INVERSE; SUM; OPERATORS;
D O I
10.1017/S1446788719000570
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Douglas-Rachford method is a splitting method frequently employed for finding zeros of sums of maximally monotone operators. When the operators in question are normal cone operators, the iterated process may be used to solve feasibility problems of the following form: Find x is an element of boolean AND(N)(k=1) S-k. The success of the method in the context of closed, convex, nonempty sets S-1, ..., S-N is well known and understood from a theoretical standpoint. However, its performance in the nonconvex context is less well understood, yet it is surprisingly impressive. This was particularly compelling to Jonathan M. Borwein who, intrigued by Elser, Rankenburg and Thibault's success in applying the method to solving sudoku puzzles, began an investigation of his own. We survey the current body of literature on the subject, and we summarize its history. We especially commemorate Professor Borwein's celebrated contributions to the area.
引用
收藏
页码:333 / 370
页数:38
相关论文
共 50 条
  • [1] On the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. MATHEMATICAL PROGRAMMING, 2017, 164 (1-2) : 263 - 284
  • [2] Circumcentering the Douglas-Rachford method
    Behling, Roger
    Cruz, Jose Yunier Bello
    Santos, Luiz-Rafael
    [J]. NUMERICAL ALGORITHMS, 2018, 78 (03) : 759 - 776
  • [3] A parameterized Douglas-Rachford algorithm
    Wang, Dongying
    Wang, Xianfu
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 839 - 869
  • [4] On the Range of the Douglas-Rachford Operator
    Bauschke, Heinz H.
    Hare, Warren L.
    Moursi, Walaa M.
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (03) : 884 - 897
  • [5] ON WEAK CONVERGENCE OF THE DOUGLAS-RACHFORD METHOD
    Svaiter, B. F.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (01) : 280 - 287
  • [6] On the local convergence of the Douglas-Rachford algorithm
    Bauschke, H. H.
    Noll, D.
    [J]. ARCHIV DER MATHEMATIK, 2014, 102 (06) : 589 - 600
  • [7] ANDERSON ACCELERATED DOUGLAS-RACHFORD SPLITTING
    Fu, Anqi
    Zhang, Junzi
    Boyd, Stephen
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : A3560 - A3583
  • [8] 广义循环Douglas-Rachford算法
    郭科
    张有才
    [J]. 西华师范大学学报(自然科学版), 2018, 39 (04) : 404 - 409
  • [9] The cyclic Douglas-Rachford algorithm with r-sets-Douglas-Rachford operators
    Aragon Artacho, Francisco J.
    Censor, Yair
    Gibali, Aviv
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (04): : 875 - 889
  • [10] The Douglas-Rachford algorithm for a hyperplane and a doubleton
    Bauschke, Heinz H.
    Dao, Minh N.
    Lindstrom, Scott B.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 74 (01) : 79 - 93