On the Douglas-Rachford algorithm

被引:44
|
作者
Bauschke, Heinz H. [1 ]
Moursi, Walaa M. [1 ,2 ]
机构
[1] Univ British Columbia, Math, Kelowna, BC V1V 1V7, Canada
[2] Mansoura Univ, Math Dept, Fac Sci, Mansoura 35516, Egypt
基金
加拿大自然科学与工程研究理事会;
关键词
Attouch-Thera duality; Douglas-Rachford algorithm; Inconsistent case; Maximally monotone operator; Nonexpansive mapping; Paramonotone operator; Sum problem; Weak convergence; MAXIMAL MONOTONE-OPERATORS; PROJECTIVE SPLITTING METHODS; FEASIBILITY PROBLEMS; LINEAR-OPERATORS; HILBERT-SPACE; SUM; CONVERGENCE; CONSTRUCTION; OPTIMIZATION; SUBSPACES;
D O I
10.1007/s10107-016-1086-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Douglas-Rachford algorithm is a very popular splitting technique for finding a zero of the sum of two maximally monotone operators. The behaviour of the algorithm remains mysterious in the general inconsistent case, i.e., when the sum problem has no zeros. However, more than a decade ago, it was shown that in the (possibly inconsistent) convex feasibility setting, the shadow sequence remains bounded and its weak cluster points solve a best approximation problem. In this paper, we advance the understanding of the inconsistent case significantly by providing a complete proof of the full weak convergence in the convex feasibility setting. In fact, a more general sufficient condition for the weak convergence in the general case is presented. Our proof relies on a new convergence principle for Fej,r monotone sequences. Numerous examples illustrate our results.
引用
收藏
页码:263 / 284
页数:22
相关论文
共 50 条
  • [21] ADAPTIVE DOUGLAS-RACHFORD SPLITTING ALGORITHM FOR THE SUM OF TWO OPERATORS
    Dao, Minh N.
    Phan, Hung M.
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2697 - 2724
  • [22] On the Range of the Douglas-Rachford Operator
    Bauschke, Heinz H.
    Hare, Warren L.
    Moursi, Walaa M.
    MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (03) : 884 - 897
  • [23] THE DOUGLAS-RACHFORD ALGORITHM WITH NEW ERROR SEQUENCES FOR AN INCLUSION PROBLEM
    Wang, Yamin
    Wang, Fenghui
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [24] Linear convergence of the generalized Douglas-Rachford algorithm for feasibility problems
    Dao, Minh N.
    Phan, Hung M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 443 - 474
  • [25] THE DOUGLAS-RACHFORD ALGORITHM FOR TWO (NOT NECESSARILY INTERSECTING) AFFINE SUBSPACES
    Bauschke, Heinz H.
    Moursi, Walaa M.
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 968 - 985
  • [26] Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage
    Setzer, Simon
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2009, 5567 : 464 - 476
  • [27] ON WEAK CONVERGENCE OF THE DOUGLAS-RACHFORD METHOD
    Svaiter, B. F.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (01) : 280 - 287
  • [28] An inertial Douglas-Rachford splitting algorithm for nonconvex and nonsmooth problems
    Feng, Junkai
    Zhang, Haibin
    Zhang, Kaili
    Zhao, Pengfei
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (17):
  • [29] Strong convergence of the viscosity douglas-rachford algorithm for inclusion problems
    Wang Y.
    Zhang H.
    Applied Set-Valued Analysis and Optimization, 2020, 2 (03): : 339 - 349
  • [30] 广义循环Douglas-Rachford算法
    郭科
    张有才
    西华师范大学学报(自然科学版), 2018, 39 (04) : 404 - 409