Douglas-Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator

被引:17
|
作者
Moursi, Walaa M. [1 ,2 ]
Vandenberghe, Lieven [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Mansoura Univ, Fac Sci, Math Dept, Mansoura 35516, Egypt
[3] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
关键词
Douglas-Rachford algorithm; Linear convergence; Lipschitz continuous mapping; Skew-symmetric operator; Strongly convex function; Strongly monotone operator; LINEAR CONVERGENCE; ALGORITHMS; INCLUSIONS;
D O I
10.1007/s10957-019-01517-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Douglas-Rachford method is a popular splitting technique for finding a zero of the sum of two subdifferential operators of proper, closed, and convex functions and, more generally, two maximally monotone operators. Recent results concerned with linear rates of convergence of the method require additional properties of the underlying monotone operators, such as strong monotonicity and cocoercivity. In this paper, we study the case, when one operator is Lipschitz continuous but not necessarily a subdifferential operator and the other operator is strongly monotone. This situation arises in optimization methods based on primal-dual approaches. We provide new linear convergence results in this setting.
引用
收藏
页码:179 / 198
页数:20
相关论文
共 50 条
  • [31] An Inertial Parametric Douglas-Rachford Splitting Method for Nonconvex Problems
    Lu, Tianle
    Zhang, Xue
    [J]. MATHEMATICS, 2024, 12 (05)
  • [32] Anderson Acceleration for Nonconvex ADMM Based on Douglas-Rachford Splitting
    Ouyang, Wenqing
    Peng, Yue
    Yao, Yuxin
    Zhang, Juyong
    Deng, Bailin
    [J]. COMPUTER GRAPHICS FORUM, 2020, 39 (05) : 221 - 239
  • [33] Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage
    Setzer, Simon
    [J]. SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2009, 5567 : 464 - 476
  • [34] ERGODIC BEHAVIOUR OF A DOUGLAS-RACHFORD OPERATOR AWAY FROM THE ORIGIN
    Borwein, Jonathan M.
    Giladi, Ohad
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (08) : 1395 - 1407
  • [35] Weak and Strong Convergence of Split Douglas-Rachford Algorithms for Monotone Inclusions
    Lv, Tianqi
    Xu, Hong-Kun
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (03) : 805 - 817
  • [36] Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM
    Giselsson, Pontus
    Boyd, Stephen
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 532 - 544
  • [37] An accelerated variance reducing stochastic method with Douglas-Rachford splitting
    Liu, Jingchang
    Xu, Linli
    Shen, Shuheng
    Ling, Qing
    [J]. MACHINE LEARNING, 2019, 108 (05) : 859 - 878
  • [38] Douglas-Rachford Splitting Method with Linearization for the Split Feasibility Problem
    Hu, Ziyue
    Dong, Qiaoli
    Tang, Yuchao
    Rassias, Michael Th
    [J]. SYMMETRY-BASEL, 2022, 14 (03):
  • [39] An inertial Douglas-Rachford splitting algorithm for nonconvex and nonsmooth problems
    Feng, Junkai
    Zhang, Haibin
    Zhang, Kaili
    Zhao, Pengfei
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (17):
  • [40] An accelerated variance reducing stochastic method with Douglas-Rachford splitting
    Jingchang Liu
    Linli Xu
    Shuheng Shen
    Qing Ling
    [J]. Machine Learning, 2019, 108 : 859 - 878