The Douglas-Rachford algorithm for the case of the sphere and the line

被引:24
|
作者
Benoist, Joel [1 ]
机构
[1] Univ Limoges, Lab XLIM, UMR CNRS 7252, F-87060 Limoges, France
关键词
Hilbert space; Douglas-Rachford algorithm; Global convergence; Lyapunov function;
D O I
10.1007/s10898-015-0296-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we solve a conjecture proposed by Borwein and Sims (Fixed-point algorithms for inverse problems in science and engineering, Springer optimization and its applications, 2011) in a Hilbert space setting. For the simple non-convex example of the sphere and the line, the sequence of Douglas-Rachford iterates converges in norm to a point of the intersection except when the initial value belongs to the hyperplane of symmetry.
引用
收藏
页码:363 / 380
页数:18
相关论文
共 50 条
  • [31] Strong convergence of the viscosity douglas-rachford algorithm for inclusion problems
    Wang Y.
    Zhang H.
    [J]. Applied Set-Valued Analysis and Optimization, 2020, 2 (03): : 339 - 349
  • [32] An inertial Douglas-Rachford splitting algorithm for nonconvex and nonsmooth problems
    Feng, Junkai
    Zhang, Haibin
    Zhang, Kaili
    Zhao, Pengfei
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (17):
  • [33] ANDERSON ACCELERATED DOUGLAS-RACHFORD SPLITTING
    Fu, Anqi
    Zhang, Junzi
    Boyd, Stephen
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : A3560 - A3583
  • [34] 广义循环Douglas-Rachford算法
    郭科
    张有才
    [J]. 西华师范大学学报(自然科学版), 2018, 39 (04) : 404 - 409
  • [35] SURVEY: SIXTY YEARS OF DOUGLAS-RACHFORD
    LINDSTROM, S. C. O. T. T. B.
    SIMS, B. R. A. I. L. E. Y.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (03) : 333 - 370
  • [36] A Cyclic Douglas-Rachford Iteration Scheme
    Borwein, Jonathan M.
    Tam, Matthew K.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (01) : 1 - 29
  • [37] Douglas-Rachford algorithm for magnetorelaxometry imaging using random and deterministic activations
    Haltmeier, Markus
    Zangerl, Gerhard
    Schier, Peter
    Aumgarten, Daniel B.
    [J]. INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2019, 60 : S63 - S78
  • [38] Convergence of an Inertial Shadow Douglas-Rachford Splitting Algorithm for Monotone Inclusions
    Fan, Jingjing
    Qin, Xiaolong
    Tan, Bing
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (14) : 1627 - 1644
  • [39] Shadow Douglas-Rachford Splitting for Monotone Inclusions
    Csetnek, Ernoe Robert
    Malitsky, Yura
    Tam, Matthew K.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 665 - 678
  • [40] Semi-implicit relaxed Douglas-Rachford algorithm (sDR) for ptychography
    Minh Pham
    Rana, Arjun
    Miao, Jianwei
    Osher, Stanley
    [J]. OPTICS EXPRESS, 2019, 27 (22) : 31246 - 31260