Multiple Sclerosis disease states as identified by unsupervised machine learning on multimodal longitudinal patient trajectories

被引:0
|
作者
Ganjgahi, H. [1 ]
Haring, D. A. [2 ]
Graham, G. [2 ]
Sun, Y. [3 ]
Gardiner, S. [3 ]
Su, W. [4 ]
Kieseier, B. C. [2 ]
Nichols, T. E. [3 ]
Arnold, D. L. [5 ]
Bermel, R. A. [6 ]
Wiendl, H. [7 ]
Holmes, C. C. [8 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] Novartis Pharma AG, Basel, Switzerland
[3] Univ Oxford, Oxford Big Data Inst, Nuffield Dept Hlth, Li Ka Shing Ctr Hlth Informat & Discovery, Oxford, England
[4] Novartis Pharmaceut, E Hanover, NJ USA
[5] McGill Univ, Montreal Neurol Inst & Hosp, Brain Imaging Ctr, Montreal, PQ, Canada
[6] Cleveland Clin, Dept Neurol, Mellen MS Ctr, Cleveland, OH 44106 USA
[7] Univ Hosp Munster, Dept Neurol, Munster, Germany
[8] Univ Oxford, Dept Stat, Oxford, England
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
P1208
引用
收藏
页码:979 / 980
页数:2
相关论文
共 50 条
  • [21] Identifying definite patterns of unmet needs in patients with multiple sclerosis using unsupervised machine learning
    Maida, Elisabetta
    Abbadessa, Gianmarco
    Cocco, Eleonora
    Valentino, Paola
    Lerede, Annalaura
    Frau, Jessica
    Miele, Giuseppina
    Bile, Floriana
    Vercellino, Marco
    Patti, Francesco
    Borriello, Giovanna
    Cavalla, Paola
    Sparaco, Maddalena
    Lavorgna, Luigi
    Bonavita, Simona
    NEUROLOGICAL SCIENCES, 2024, 45 (07) : 3333 - 3345
  • [22] Author Correction: Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data
    Arman Eshaghi
    Alexandra L. Young
    Peter A. Wijeratne
    Ferran Prados
    Douglas L. Arnold
    Sridar Narayanan
    Charles R. G. Guttmann
    Frederik Barkhof
    Daniel C. Alexander
    Alan J. Thompson
    Declan Chard
    Olga Ciccarelli
    Nature Communications, 12
  • [23] Multiple sclerosis endophenotypes identified by high-dimensional blood signatures are associated with distinct disease trajectories
    Gross, Catharina C.
    Schulte-Mecklenbeck, Andreas
    Steinberg, Olga V.
    Wirth, Timo
    Lauks, Sarah
    Bittner, Stefan
    Schindler, Patrick
    Baranzini, Sergio E.
    Groppa, Sergiu
    Bellmann-Strobl, Judith
    Buenger, Nora
    Chien, Claudia
    Dawin, Eva
    Eveslage, Maria
    Fleischer, Vinzenz
    Gonzalez-Escamilla, Gabriel
    Gisevius, Barbara
    Haas, Juergen
    Kerschensteiner, Martin
    Kirstein, Lucienne
    Korsukewitz, Catharina
    Lohmann, Lisa
    Luenemann, Jan D.
    Luessi, Felix
    Meyer zu Hoerste, Gerd
    Motte, Jeremias
    Ruck, Tobias
    Ruprecht, Klemens
    Schwab, Nicholas
    Steffen, Falk
    Meuth, Sven G.
    Paul, Friedemann
    Wildemann, Brigitte
    Kuempfel, Tania
    Gold, Ralf
    Hahn, Tim
    Zipp, Frauke
    Klotz, Luisa
    Wiendl, Heinz
    SCIENCE TRANSLATIONAL MEDICINE, 2024, 16 (740)
  • [24] Longitudinal trajectories of digital upper limb biomarkers for multiple sclerosis
    Foong, Yi Chao
    Merlo, Daniel
    Gresle, Melissa
    Zhu, Chao
    Buzzard, Katherine
    Lechner-Scott, Jeannette
    Barnett, Michael
    Taylor, Bruce V.
    Kalincik, Tomas
    Kilpatrick, Trevor
    Darby, David
    Dobay, Pamela
    van Beek, Johan
    Hyde, Robert
    Simpson-Yap, Steve
    Butzkueven, Helmut
    van Der Walt, Anneke
    EUROPEAN JOURNAL OF NEUROLOGY, 2025, 32 (01)
  • [25] PREDICTING DISEASE COURSE FOR MULTIPLE SCLEROSIS PATIENTS: MACHINE LEARNING APPROACHES
    Lizee, Antoine M.
    Ren, Shihao R.
    Baranzini, Sergio E.
    Gourraud, Pierre-Antoine
    HLA, 2016, 87 (04) : 275 - 275
  • [26] Exploration of machine learning techniques in predicting multiple sclerosis disease course
    Zhao, Yijun
    Healy, Brian C.
    Rotstein, Delia
    Guttmann, Charles R. G.
    Bakshi, Rohit
    Weiner, Howard L.
    Brodley, Carla E.
    Chitnis, Tanuja
    PLOS ONE, 2017, 12 (04):
  • [27] PREDICTING DISEASE COURSE FOR MULTIPLE SCLEROSIS PATIENTS: MACHINE LEARNING APPROACHES
    Lizee, Antoine M.
    Shihao, Rex
    Bove, Riley
    Baranzini, Sergio E.
    Gourraud, Pierre-Antoine
    HLA, 2017, 89 (06) : 382 - 382
  • [28] Multiple sclerosis disease course prediction: a machine learning model based on patient reported and clinician assessed outcomes
    Tacchino, A.
    Fiorini, S.
    Ponzio, M.
    Barla, A.
    Verri, A.
    Battaglia, M. A.
    Brichetto, G.
    MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 58 - 59
  • [29] Quasi-Deterministic Processes with Monotonic Trajectories and Unsupervised Machine Learning
    Orekhov, Andrey V.
    MATHEMATICS, 2021, 9 (18)
  • [30] Identifying distinct phenotypic clusters of relapsing remitting multiple sclerosis patients using unsupervised machine learning
    Briggs, Farren
    Conway, Devon
    De Nadai, Alessandro
    Ontaneda, Daniel
    Briggs, Douglas
    NEUROLOGY, 2021, 96 (15)