Multiple Sclerosis disease states as identified by unsupervised machine learning on multimodal longitudinal patient trajectories

被引:0
|
作者
Ganjgahi, H. [1 ]
Haring, D. A. [2 ]
Graham, G. [2 ]
Sun, Y. [3 ]
Gardiner, S. [3 ]
Su, W. [4 ]
Kieseier, B. C. [2 ]
Nichols, T. E. [3 ]
Arnold, D. L. [5 ]
Bermel, R. A. [6 ]
Wiendl, H. [7 ]
Holmes, C. C. [8 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] Novartis Pharma AG, Basel, Switzerland
[3] Univ Oxford, Oxford Big Data Inst, Nuffield Dept Hlth, Li Ka Shing Ctr Hlth Informat & Discovery, Oxford, England
[4] Novartis Pharmaceut, E Hanover, NJ USA
[5] McGill Univ, Montreal Neurol Inst & Hosp, Brain Imaging Ctr, Montreal, PQ, Canada
[6] Cleveland Clin, Dept Neurol, Mellen MS Ctr, Cleveland, OH 44106 USA
[7] Univ Hosp Munster, Dept Neurol, Munster, Germany
[8] Univ Oxford, Dept Stat, Oxford, England
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
P1208
引用
收藏
页码:979 / 980
页数:2
相关论文
共 50 条
  • [41] Predicting malnutrition from longitudinal patient trajectories with deep learning
    Jin, Boyang Tom
    Choi, Mi Hyun
    Moyer, Meagan F.
    Kim, David A.
    PLOS ONE, 2022, 17 (07):
  • [42] Uncovering STEMI patient phenotypes using unsupervised machine learning
    Chunta, Alec
    Miller, Robert J. H.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 413
  • [43] Applying machine learning to multimodal neuroimaging data to classify multiple sclerosis patients with and without processing speed impairment
    Buyukturkoglu, K.
    Nunez, M.
    Lee, S.
    Sumowski, J. F.
    Leavitt, V. M.
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 696 - 696
  • [44] Machine learning-based prediction of disease progression in primary progressive multiple sclerosis
    Gurevich, Michael
    Zilkha-Falb, Rina
    Sherman, Jia
    Usdin, Maxime
    Raposo, Catarina
    Craveiro, Licinio
    Sonis, Polina
    Magalashvili, David
    Menascu, Shay
    Dolev, Mark
    Achiron, Anat
    BRAIN COMMUNICATIONS, 2025, 7 (01)
  • [45] Machine Learning Approaches in Study of Multiple Sclerosis Disease Through Magnetic Resonance Images
    Moazami, Faezeh
    Lefevre-Utile, Alain
    Papaloukas, Costas
    Soumelis, Vassili
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [46] The Hidden Information in Patient Reported Outcomes: Multiple Sclerosis as a proof of concept of a machine learning approach
    Brichetto, Giampaolo
    Tacchino, Andrea
    Podda, Jessica
    Bragadin, Margherita Monti
    Konrad, Giovanna
    Kolaczkowski, Laura
    Loud, Sara
    Zaratin, Paola
    Battaglia, Mario Alberto
    McBurney, Robert
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 (07) : 1062 - 1062
  • [47] Stratification of multiple sclerosis patients using unsupervised machine learning: a single-visit MRI-driven approach
    Pontillo, Giuseppe
    Penna, Simone
    Cocozza, Sirio
    Quarantelli, Mario
    Gravina, Michela
    Lanzillo, Roberta
    Marrone, Stefano
    Costabile, Teresa
    Inglese, Matilde
    Morra, Vincenzo Brescia
    Riccio, Daniele
    Elefante, Andrea
    Petracca, Maria
    Sansone, Carlo
    Brunetti, Arturo
    EUROPEAN RADIOLOGY, 2022, 32 (08) : 5382 - 5391
  • [48] Identifying Multiple Sclerosis Lesion Subtypes with Distinct Microstructural Features using Advanced Microstructural MRI and Unsupervised Machine Learning
    Shin, Hyeong-Geol
    Dewey, Blake
    Brabec, Jan
    Li, Xu
    Ezzedin, Omar
    Ecoff, Kaitlyn
    Ramirez, Alexandra
    Duval, Anna
    Fitzgerald, Kathryn
    Prince, Jerry
    Saidha, Shiv
    Calabresi, Peter
    van Zijl, Peter
    MULTIPLE SCLEROSIS JOURNAL, 2023, 29 : 857 - 857
  • [49] Stratification of multiple sclerosis patients using unsupervised machine learning: a single-visit MRI-driven approach
    Giuseppe Pontillo
    Simone Penna
    Sirio Cocozza
    Mario Quarantelli
    Michela Gravina
    Roberta Lanzillo
    Stefano Marrone
    Teresa Costabile
    Matilde Inglese
    Vincenzo Brescia Morra
    Daniele Riccio
    Andrea Elefante
    Maria Petracca
    Carlo Sansone
    Arturo Brunetti
    European Radiology, 2022, 32 : 5382 - 5391
  • [50] Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records
    Wang, Yanshan
    Zhao, Yiqing
    Therneau, Terry M.
    Atkinson, Elizabeth J.
    Tafti, Ahmad P.
    Zhang, Nan
    Amin, Shreyasee
    Limper, Andrew H.
    Khosla, Sundeep
    Liu, Hongfang
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 102