Multiple Sclerosis disease states as identified by unsupervised machine learning on multimodal longitudinal patient trajectories

被引:0
|
作者
Ganjgahi, H. [1 ]
Haring, D. A. [2 ]
Graham, G. [2 ]
Sun, Y. [3 ]
Gardiner, S. [3 ]
Su, W. [4 ]
Kieseier, B. C. [2 ]
Nichols, T. E. [3 ]
Arnold, D. L. [5 ]
Bermel, R. A. [6 ]
Wiendl, H. [7 ]
Holmes, C. C. [8 ]
机构
[1] Univ Oxford, Dept Stat, Oxford, England
[2] Novartis Pharma AG, Basel, Switzerland
[3] Univ Oxford, Oxford Big Data Inst, Nuffield Dept Hlth, Li Ka Shing Ctr Hlth Informat & Discovery, Oxford, England
[4] Novartis Pharmaceut, E Hanover, NJ USA
[5] McGill Univ, Montreal Neurol Inst & Hosp, Brain Imaging Ctr, Montreal, PQ, Canada
[6] Cleveland Clin, Dept Neurol, Mellen MS Ctr, Cleveland, OH 44106 USA
[7] Univ Hosp Munster, Dept Neurol, Munster, Germany
[8] Univ Oxford, Dept Stat, Oxford, England
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
P1208
引用
收藏
页码:979 / 980
页数:2
相关论文
共 50 条
  • [31] Unsupervised machine learning for disease prediction: a comparative performance analysis using multiple datasets
    Haohui Lu
    Shahadat Uddin
    Health and Technology, 2024, 14 : 141 - 154
  • [32] Unsupervised machine learning for disease prediction: a comparative performance analysis using multiple datasets
    Lu, Haohui
    Uddin, Shahadat
    HEALTH AND TECHNOLOGY, 2024, 14 (01) : 141 - 154
  • [33] Applying machine learning to multimodal neuroimaging data to predict visual episodic memory performance in multiple sclerosis
    Buyukturkoglu, K.
    Li, Y.
    Tozlu, C.
    Kuceyeski, A.
    Sumowski, J.
    Leavitt, V.
    MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (3_SUPPL) : 118 - 118
  • [34] Classifying and characterizing multiple sclerosis disease phenotypes with functional connectivity and machine learning
    Rocca, M. Assunta
    Valsasina, P.
    Marchesi, O.
    Preziosa, P.
    Sona, D.
    Tessadori, J.
    Yamin, M.
    Filippi, M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2021, 28 : 140 - 140
  • [35] Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study
    Leocani, L.
    Rovaris, M.
    Boneschi, F. M.
    Medaglini, S.
    Rossi, P.
    Martinelli, V.
    Amadio, S.
    Comi, G.
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2006, 77 (09): : 1030 - 1035
  • [36] UNSUPERVISED MACHINE LEARNING FOR PATIENT CLUSTERING IN CHRONIC REFRACTORY PAIN SYNDROMES AND FIBROMYALGIA: RESULTS FROM A MULTIMODAL TREATMENT PROGRAM
    Hugle, T.
    Pretat, T.
    Lovejoy, C.
    Azevedo, P. Ming
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 131 - 131
  • [37] Glaucomatous patterns of binocular visual field loss identified by unsupervised machine learning
    Bowd, Christopher
    Yousefi, Siamak
    Meira-Freitas, Daniel
    Goldbaum, Michael Henry
    Zangwill, Linda M.
    Weinreb, Robert N.
    Liebmann, Jeffrey M.
    Girkin, Christopher A.
    Medeiros, Felipe A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [38] Moyamoya Disease in Patient with Multiple Sclerosis
    Al Shamrani, Foziah
    Al-Khamis, Fahad
    Al Ghanimi, Ibrahim
    Khuda, Inam
    Al Jaafari, Danah
    Alabdali, Majed
    BAHRAIN MEDICAL BULLETIN, 2015, 37 (03) : 201 - +
  • [39] Identifying Conformation States of Polymer through Unsupervised Machine Learning
    Li-Wang Sun
    Hong Li
    Xiao-Qin Zhang
    He-Bei Gao
    Meng-Bo Luo
    Chinese Journal of Polymer Science, 2020, 38 : 1403 - 1408
  • [40] Identifying Conformation States of Polymer through Unsupervised Machine Learning
    Sun, Li-Wang
    Li, Hong
    Zhang, Xiao-Qin
    Gao, He-Bei
    Luo, Meng-Bo
    CHINESE JOURNAL OF POLYMER SCIENCE, 2020, 38 (12) : 1403 - 1408