Longitudinal trajectories of digital upper limb biomarkers for multiple sclerosis

被引:1
|
作者
Foong, Yi Chao [1 ,2 ,3 ,4 ]
Merlo, Daniel [1 ,5 ]
Gresle, Melissa [1 ,2 ,6 ]
Zhu, Chao [1 ]
Buzzard, Katherine [5 ,6 ]
Lechner-Scott, Jeannette [7 ,8 ]
Barnett, Michael [9 ,10 ]
Taylor, Bruce V. [4 ]
Kalincik, Tomas [11 ,12 ]
Kilpatrick, Trevor [12 ,13 ]
Darby, David [1 ,2 ,3 ]
Dobay, Pamela [14 ]
van Beek, Johan [14 ]
Hyde, Robert [14 ]
Simpson-Yap, Steve [4 ,11 ,13 ,15 ]
Butzkueven, Helmut [1 ,2 ]
van Der Walt, Anneke [1 ,2 ]
机构
[1] Monash Univ, Cent Clin Sch, Dept Neurosci, Melbourne, Vic, Australia
[2] Alfred Hlth, Melbourne, Vic, Australia
[3] Royal Hobart Hosp, Hobart, Tas, Australia
[4] Univ Tasmania, Menzies Inst Med Res, MS Flagship, Hobart, Tas, Australia
[5] Eastern Hlth, Melbourne, Vic, Australia
[6] Melbourne Hlth, Melbourne, Vic, Australia
[7] Univ Newcastle, Newcastle, NSW, Australia
[8] Hunter New England Hlth, Newcastle, NSW, Australia
[9] Univ Sydney, Brain & Mind Ctr, Sydney, NSW, Australia
[10] Australia Sydney Neuroimaging Anal Ctr, Camperdown, NSW, Australia
[11] Univ Melbourne, Dept Med, CORE, Melbourne, Vic, Australia
[12] Royal Melbourne Hosp, Neuroimmunol Ctr, Dept Neurol, Melbourne, Vic, Australia
[13] Univ Melbourne, Florey Dept Neurosci & Mental Hlth, Melbourne, Vic, Australia
[14] Biogen Int GmbH, Zug, Switzerland
[15] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Neuroepidemiol Unit, Carlton, Vic, Australia
关键词
digital biomarkers; latent class; manual dexterity test; multiple sclerosis; upper limb;
D O I
10.1111/ene.70000
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Upper limb dysfunction is a common debilitating feature of relapsing-remitting multiple sclerosis (RRMS). We aimed to examine the longitudinal trajectory of the iPad (R)-based Manual Dexterity Test (MDT) and predictors of change over time. Methods: We prospectively enrolled RRMS patients (limited to Expanded Disability Status Scale (EDSS) < 4). Longitudinal data was analysed using mixed-effect modelling and latent class mixed models. We then examined whether group membership in latent classes predicted confirmed slowing in MDT. Results: Seven hundred and twenty-one participants had complete data for analysis. At a population level, MDT remained stable over time. No practice effect was seen. Baseline disability and T2 lesion volume were the strongest predictors of longitudinal MDT performance. We identified two latent class trajectories of MDT. The slower latent class was typified by greater variability and a weak association with confirmed worsening of MDT and EDSS. When compared to trajectory analysis stratified by baseline MDT, latent class analysis (LCA) was able to identify those at greater risk of confirmed slowing, signifying the importance of latent processes in upper limb function in pwMS. Conclusion: In this cohort of mild to moderate RRMS, MDT scores remained stable over time with no evidence of a practice effect at a population level. Trajectory analysis based on LCA identified a cohort with greater variability and risk of disability progression and domain specific worsening. Our findings demonstrate the importance of latent processes in determining upper limb function in pwMS.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Longitudinal Trajectories of Digital Cognitive Biomarkers for Multiple Sclerosis
    Foong, Yi Chao
    Merlo, Daniel
    Gresle, Melissa
    Zhu, Chao
    Buzzard, Katherine
    Lechner-Scott, Jeannette
    Barnett, Michael
    Wang, Chenyu
    Taylor, Bruce V.
    Kalincik, Tomas
    Kilpatrick, Trevor
    Darby, David
    Dobay, Pamela
    van Beek, Johan
    Hyde, Robert
    Simpson-Yap, Steve
    Butzkueven, Helmut
    van Der Walt, Anneke
    ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2025,
  • [2] Digital Biomarkers in Multiple Sclerosis
    Dillenseger, Anja
    Weidemann, Marie Luise
    Trentzsch, Katrin
    Inojosa, Hernan
    Haase, Rocco
    Schriefer, Dirk
    Voigt, Isabel
    Scholz, Maria
    Akguen, Katja
    Ziemssen, Tjalf
    BRAIN SCIENCES, 2021, 11 (11)
  • [3] Assessing upper limb function in multiple sclerosis
    Lamers, Ilse
    Feys, Peter
    MULTIPLE SCLEROSIS JOURNAL, 2014, 20 (07) : 775 - 784
  • [4] Upper limb entrapment neuropathies in multiple sclerosis
    Yin, Han
    Nair, Krishnan P. S.
    Rao, Dasappaiah G.
    Hariharan, Sankaranarayanan
    Spencer, Amy
    Baster, Kathleen
    MULTIPLE SCLEROSIS JOURNAL-EXPERIMENTAL TRANSLATIONAL AND CLINICAL, 2020, 6 (02)
  • [5] Interactive sensory digital platform for upper limb sensory assessment in patients with multiple sclerosis
    Greenberg-Abrahami, Michal
    Bitterman, Neomi
    Magalashvili, David
    Menascu, Shay
    Achiron, Anat
    NEUROLOGY, 2017, 88
  • [6] Upper limb movements as digital biomarkers in people with ALS
    Straczkiewicz, Marcin
    Karas, Marta
    Johnson, Stephen A.
    Burke, Katherine M.
    Scheier, Zoe
    Royse, Tim B.
    Calcagno, Narghes
    Clark, Alison
    Iyer, Amrita
    Berry, James D.
    Onnela, Jukka-Pekka
    EBIOMEDICINE, 2024, 101
  • [7] Importance of upper limb function in advanced multiple sclerosis
    Thomson, A.
    Giovannoni, G.
    Marta, M.
    Gnanpavan, S.
    Turner, B.
    Baker, D.
    Schmierer, K.
    MULTIPLE SCLEROSIS JOURNAL, 2016, 22 : 676 - 676
  • [8] Neurophysiological correlates of upper limb function in multiple sclerosis
    Skoric, M. Krbot
    Gabelic, T.
    Malojcic, B.
    Lakusic, D. Mahovic
    Lisak, M.
    Barun, B.
    Crnosija, L.
    Habek, M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2016, 23 : 153 - 153
  • [9] The occurrence of dystonia in upper-limb multiple sclerosis tremor
    Van der Walt, A.
    Buzzard, K.
    Sung, S.
    Spelman, T.
    Kolbe, S. C.
    Marriott, M.
    Butzkueven, H.
    Evans, A.
    MULTIPLE SCLEROSIS JOURNAL, 2015, 21 (14) : 1847 - 1855
  • [10] MRI and neurophysiological correlates of upper limb function in multiple sclerosis
    Skoric, M. Krbot
    Gabelic, T.
    Petravic, D.
    Lisak, M.
    Barun, B.
    Crnosija, L.
    Habek, M.
    MULTIPLE SCLEROSIS JOURNAL, 2016, 22 : 255 - 255