Longitudinal trajectories of digital upper limb biomarkers for multiple sclerosis

被引:1
|
作者
Foong, Yi Chao [1 ,2 ,3 ,4 ]
Merlo, Daniel [1 ,5 ]
Gresle, Melissa [1 ,2 ,6 ]
Zhu, Chao [1 ]
Buzzard, Katherine [5 ,6 ]
Lechner-Scott, Jeannette [7 ,8 ]
Barnett, Michael [9 ,10 ]
Taylor, Bruce V. [4 ]
Kalincik, Tomas [11 ,12 ]
Kilpatrick, Trevor [12 ,13 ]
Darby, David [1 ,2 ,3 ]
Dobay, Pamela [14 ]
van Beek, Johan [14 ]
Hyde, Robert [14 ]
Simpson-Yap, Steve [4 ,11 ,13 ,15 ]
Butzkueven, Helmut [1 ,2 ]
van Der Walt, Anneke [1 ,2 ]
机构
[1] Monash Univ, Cent Clin Sch, Dept Neurosci, Melbourne, Vic, Australia
[2] Alfred Hlth, Melbourne, Vic, Australia
[3] Royal Hobart Hosp, Hobart, Tas, Australia
[4] Univ Tasmania, Menzies Inst Med Res, MS Flagship, Hobart, Tas, Australia
[5] Eastern Hlth, Melbourne, Vic, Australia
[6] Melbourne Hlth, Melbourne, Vic, Australia
[7] Univ Newcastle, Newcastle, NSW, Australia
[8] Hunter New England Hlth, Newcastle, NSW, Australia
[9] Univ Sydney, Brain & Mind Ctr, Sydney, NSW, Australia
[10] Australia Sydney Neuroimaging Anal Ctr, Camperdown, NSW, Australia
[11] Univ Melbourne, Dept Med, CORE, Melbourne, Vic, Australia
[12] Royal Melbourne Hosp, Neuroimmunol Ctr, Dept Neurol, Melbourne, Vic, Australia
[13] Univ Melbourne, Florey Dept Neurosci & Mental Hlth, Melbourne, Vic, Australia
[14] Biogen Int GmbH, Zug, Switzerland
[15] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Neuroepidemiol Unit, Carlton, Vic, Australia
关键词
digital biomarkers; latent class; manual dexterity test; multiple sclerosis; upper limb;
D O I
10.1111/ene.70000
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Upper limb dysfunction is a common debilitating feature of relapsing-remitting multiple sclerosis (RRMS). We aimed to examine the longitudinal trajectory of the iPad (R)-based Manual Dexterity Test (MDT) and predictors of change over time. Methods: We prospectively enrolled RRMS patients (limited to Expanded Disability Status Scale (EDSS) < 4). Longitudinal data was analysed using mixed-effect modelling and latent class mixed models. We then examined whether group membership in latent classes predicted confirmed slowing in MDT. Results: Seven hundred and twenty-one participants had complete data for analysis. At a population level, MDT remained stable over time. No practice effect was seen. Baseline disability and T2 lesion volume were the strongest predictors of longitudinal MDT performance. We identified two latent class trajectories of MDT. The slower latent class was typified by greater variability and a weak association with confirmed worsening of MDT and EDSS. When compared to trajectory analysis stratified by baseline MDT, latent class analysis (LCA) was able to identify those at greater risk of confirmed slowing, signifying the importance of latent processes in upper limb function in pwMS. Conclusion: In this cohort of mild to moderate RRMS, MDT scores remained stable over time with no evidence of a practice effect at a population level. Trajectory analysis based on LCA identified a cohort with greater variability and risk of disability progression and domain specific worsening. Our findings demonstrate the importance of latent processes in determining upper limb function in pwMS.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Longitudinal BMI trajectories in multiple sclerosis: Sex differences in association with disease severity
    Bove, R.
    Musallam, A.
    Xia, Z.
    Baruch, N.
    Messina, S.
    Healy, B. C.
    Chitnis, T.
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2016, 8 : 136 - 140
  • [32] Biomarkers for Multiple Sclerosis
    Tomioka, Ryo
    Matsui, Makoto
    INTERNAL MEDICINE, 2014, 53 (05) : 361 - 365
  • [33] Biomarkers in multiple sclerosis
    Housley, William J.
    Pitt, David
    Hafler, David A.
    CLINICAL IMMUNOLOGY, 2015, 161 (01) : 51 - 58
  • [34] Biomarkers in Multiple Sclerosis
    Paul, Anu
    Comabella, Manuel
    Gandhi, Roopali
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2019, 9 (03):
  • [35] Biomarkers in multiple sclerosis
    Martin, Roland
    Bielekova, Bibiana
    Hohlfeld, Reinhard
    Utz, Ursula
    DISEASE MARKERS, 2006, 22 (04) : 183 - 185
  • [36] Biomarkers in multiple sclerosis
    Fernandez, Oscar
    Arroyo-Gonzalez, Rafael
    Rodriguez-Antigueedad, Alfredo
    Garcia-Merino, Juan A.
    Comabella, Manuel
    Villar, Luisa M.
    Izguierdo, Guillermo
    Tintore, Mar
    Oreja-Guevara, Celia
    Alvarez-Cermeno, Jose C.
    Meca-Lallana, Jose E.
    Prieto, Jose M.
    Ramio-Torrenta, Lluis
    Martinez-Yelamos, Sergio
    Montalban, Xavier
    REVISTA DE NEUROLOGIA, 2013, 56 (07) : 375 - 390
  • [37] Biomarkers in multiple sclerosis
    Wender, Mieczyslaw
    AKTUALNOSCI NEUROLOGICZNE, 2009, 9 (02): : 109 - 115
  • [38] BIOMARKERS FOR MULTIPLE SCLEROSIS
    Villoslada, Pablo
    DRUG NEWS & PERSPECTIVES, 2010, 23 (09) : 585 - 595
  • [39] Quantification of upper limb dysfunction in the activities of the daily living in persons with multiple sclerosis
    Pisa, Marco
    Ruiz, Jennifer A.
    DeLuca, Gabriele C.
    Crespo, Marta de Andres
    DelMastro, Heather M.
    Olson, Kayla M.
    Triche, Elizabeth W.
    Lo, Albert C.
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2022, 63
  • [40] Reliability Of Unsupported Upper Limb Exercise Test Performance For Patients With Multiple Sclerosis
    Kushner, Susan R.
    Wetzel, Jane
    Smith, Shawna
    Vasicek, Julie
    English, Angela
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2005, 37 : S225 - S226