Longitudinal trajectories of digital upper limb biomarkers for multiple sclerosis

被引:1
|
作者
Foong, Yi Chao [1 ,2 ,3 ,4 ]
Merlo, Daniel [1 ,5 ]
Gresle, Melissa [1 ,2 ,6 ]
Zhu, Chao [1 ]
Buzzard, Katherine [5 ,6 ]
Lechner-Scott, Jeannette [7 ,8 ]
Barnett, Michael [9 ,10 ]
Taylor, Bruce V. [4 ]
Kalincik, Tomas [11 ,12 ]
Kilpatrick, Trevor [12 ,13 ]
Darby, David [1 ,2 ,3 ]
Dobay, Pamela [14 ]
van Beek, Johan [14 ]
Hyde, Robert [14 ]
Simpson-Yap, Steve [4 ,11 ,13 ,15 ]
Butzkueven, Helmut [1 ,2 ]
van Der Walt, Anneke [1 ,2 ]
机构
[1] Monash Univ, Cent Clin Sch, Dept Neurosci, Melbourne, Vic, Australia
[2] Alfred Hlth, Melbourne, Vic, Australia
[3] Royal Hobart Hosp, Hobart, Tas, Australia
[4] Univ Tasmania, Menzies Inst Med Res, MS Flagship, Hobart, Tas, Australia
[5] Eastern Hlth, Melbourne, Vic, Australia
[6] Melbourne Hlth, Melbourne, Vic, Australia
[7] Univ Newcastle, Newcastle, NSW, Australia
[8] Hunter New England Hlth, Newcastle, NSW, Australia
[9] Univ Sydney, Brain & Mind Ctr, Sydney, NSW, Australia
[10] Australia Sydney Neuroimaging Anal Ctr, Camperdown, NSW, Australia
[11] Univ Melbourne, Dept Med, CORE, Melbourne, Vic, Australia
[12] Royal Melbourne Hosp, Neuroimmunol Ctr, Dept Neurol, Melbourne, Vic, Australia
[13] Univ Melbourne, Florey Dept Neurosci & Mental Hlth, Melbourne, Vic, Australia
[14] Biogen Int GmbH, Zug, Switzerland
[15] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Neuroepidemiol Unit, Carlton, Vic, Australia
关键词
digital biomarkers; latent class; manual dexterity test; multiple sclerosis; upper limb;
D O I
10.1111/ene.70000
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Upper limb dysfunction is a common debilitating feature of relapsing-remitting multiple sclerosis (RRMS). We aimed to examine the longitudinal trajectory of the iPad (R)-based Manual Dexterity Test (MDT) and predictors of change over time. Methods: We prospectively enrolled RRMS patients (limited to Expanded Disability Status Scale (EDSS) < 4). Longitudinal data was analysed using mixed-effect modelling and latent class mixed models. We then examined whether group membership in latent classes predicted confirmed slowing in MDT. Results: Seven hundred and twenty-one participants had complete data for analysis. At a population level, MDT remained stable over time. No practice effect was seen. Baseline disability and T2 lesion volume were the strongest predictors of longitudinal MDT performance. We identified two latent class trajectories of MDT. The slower latent class was typified by greater variability and a weak association with confirmed worsening of MDT and EDSS. When compared to trajectory analysis stratified by baseline MDT, latent class analysis (LCA) was able to identify those at greater risk of confirmed slowing, signifying the importance of latent processes in upper limb function in pwMS. Conclusion: In this cohort of mild to moderate RRMS, MDT scores remained stable over time with no evidence of a practice effect at a population level. Trajectory analysis based on LCA identified a cohort with greater variability and risk of disability progression and domain specific worsening. Our findings demonstrate the importance of latent processes in determining upper limb function in pwMS.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Trunk control: The essence for upper limb functionality in patients with multiple sclerosis
    Korkmaz, Nilufer Cetisli
    Akman, Tuba Can
    Oren, Gonul Kilavuz
    Bir, Levent Sinan
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2018, 24 : 101 - 106
  • [22] A NOVEL KINEMATIC TOOL TO ASSESS UPPER LIMB DYSFUNCTION IN MULTIPLE SCLEROSIS
    Fernandes, Linford
    Coats, Rachel
    Mon-Williams, Mark
    Ford, Helen
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2022, 93 (09):
  • [23] Content and extent of upper limb rehabilitation in multiple sclerosis across Europe
    Loyning, I. G.
    Feys, P.
    Jansa, J.
    Santarmarta, E.
    Rasova, K.
    Kallmayer, L.
    Tacchino, A.
    Golewska, A.
    Smedal, T.
    Nodtvedt, S.
    Fillo, N.
    Raats, J.
    Kerhofs, L.
    Baert, I.
    MULTIPLE SCLEROSIS JOURNAL, 2016, 22 : 392 - 393
  • [24] Upper limb movement analysis during gait in multiple sclerosis patients
    Elsworth-Edelsten, Charlotte
    Bonnefoy-Mazure, Alice
    Laidet, Magali
    Armand, Stephane
    Assal, Frederic
    Lalive, Patrice
    Allali, Gilles
    HUMAN MOVEMENT SCIENCE, 2017, 54 : 248 - 252
  • [25] Bilateral asynchrony as a marker of upper limb impairments in people with Multiple Sclerosis
    Solaro, C.
    Di Giovanni, R.
    Grange, E.
    Masuccio, F.
    Brichetto, G.
    Tacchino, A.
    EUROPEAN JOURNAL OF NEUROLOGY, 2021, 28 : 323 - 324
  • [26] Soft Robotics to Enhance Upper Limb Endurance in Individuals with Multiple Sclerosis
    Lotti, Nicola
    Missiroli, Francesco
    Galofaro, Elisa
    Tricomi, Enrica
    Di Domenico, Dario
    Semprini, Marianna
    Casadio, Maura
    Brichetto, Giampaolo
    De Michieli, Lorenzo
    Tacchino, Andrea
    Masia, Lorenzo
    SOFT ROBOTICS, 2024, 11 (02) : 338 - 346
  • [27] Changes of upper limb function after rehabilitation in Persons with Multiple Sclerosis
    Bertoni, R.
    Cattaneo, D.
    Jonsdottir, J.
    MULTIPLE SCLEROSIS JOURNAL, 2023, 29 : 37 - 37
  • [28] A longitudinal investigation of biomarkers of depression in individuals newly diagnosed with multiple sclerosis
    Kiropoulos, L.
    Simpson-O'Brien, N.
    Kilpatrick, T.
    Davenport, R.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 : 40 - 41
  • [29] A longitudinal investigation of biomarkers of depression in individuals newly diagnosed with multiple sclerosis
    Kiropoulos, L.
    Simpson-O'Brien, N.
    Kilpatrick, T.
    Davenport, R.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (4_SUPPL) : 40 - 41
  • [30] Will Biomarkers Determine What Is Next in Multiple Sclerosis? Biomarkers in Multiple Sclerosis
    Stuve, Olaf
    Racke, Michael K.
    JAMA NEUROLOGY, 2016, 73 (05) : 496 - 497