Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation

被引:24
|
作者
Dewar, Michael [1 ]
Scerri, Kenneth [2 ]
Kadirkamanathan, Visakan [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
关键词
Dynamic spatio-temporal modeling; expectation-maximization (EM) algorithm; Integro-Difference Equation (IDE); maximum-likelihood parameter estimation; state-space; MAXIMUM-LIKELIHOOD; IDENTIFICATION; DISPERSAL;
D O I
10.1109/TSP.2008.2005091
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A continuous-in-space, discrete-in-time dynamic spatio-temporal model known as the Integro-Difference Equation (IDE) model is presented in the context of data-driven modeling. A novel decomposition of the IDE is derived, leading to state-space representation that does not couple the number of states with the number of observation locations or the number of parameters. Based on this state-space model, an expectation-maximization (EM) algorithm is developed in order to jointly estimate the IDE model's spatial field and spatial mixing kernel. The resulting modeling framework is demonstrated on a set of examples.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [1] Flexible integro-difference equation modeling for spatio-temporal data
    Richardson, Robert
    Kottas, Athanasios
    Sanso, Bruno
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 109 : 182 - 198
  • [2] Polynomial nonlinear spatio-temporal integro-difference equation models
    Wikle, Christopher K.
    Holan, Scott H.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2011, 32 (04) : 339 - 350
  • [3] Deep integro-difference equation models for spatio-temporal forecasting
    Zammit-Mangion, Andrew
    Wikle, Christopher K.
    [J]. SPATIAL STATISTICS, 2020, 37
  • [4] Scalable data-driven modeling of spatio-temporal systems: Weather forecasting
    Moshki, Mohsen
    Kabiri, Peyman
    Mohebalhojeh, Alireza
    [J]. INTELLIGENT DATA ANALYSIS, 2017, 21 (03) : 577 - 595
  • [5] Data-driven spatio-temporal modelling of glioblastoma
    Jorgensen, Andreas Christ Solvsten
    Hill, Ciaran Scott
    Sturrock, Marc
    Tang, Wenhao
    Karamched, Saketh R.
    Gorup, Dunja
    Lythgoe, Mark F.
    Parrinello, Simona
    Marguerat, Samuel
    Shahrezaei, Vahid
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (03):
  • [6] Spatio-Temporal Forecasting: A Survey of Data-Driven Models Using Exogenous Data
    Berkani, Safaa
    Guermah, Bassma
    Zakroum, Mehdi
    Ghogho, Mounir
    [J]. IEEE ACCESS, 2023, 11 : 75191 - 75214
  • [7] Data-driven Comparison of Spatio-temporal Monitoring Techniques
    Caley, Jeffrey A.
    Hollinger, Geoffrey A.
    [J]. OCEANS 2015 - MTS/IEEE WASHINGTON, 2015,
  • [8] Data Driven Spatio-Temporal Modeling of Parking Demand
    Fiez, Tanner
    Ratliff, Lillian J.
    Dowling, Chase
    Zhang, Baosen
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2757 - 2762
  • [9] Score-Driven Modeling of Spatio-Temporal Data
    Gasperoni, Francesca
    Luati, Alessandra
    Paci, Lucia
    D'Innocenzo, Enzo
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 1066 - 1077
  • [10] Unified Spatio-Temporal Graph Neural Networks: Data-Driven Modeling for Social Science
    Li, Yifan
    Lin, Yu
    Gao, Yang
    Khan, Latifur
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,