Scalable data-driven modeling of spatio-temporal systems: Weather forecasting

被引:0
|
作者
Moshki, Mohsen [1 ]
Kabiri, Peyman [1 ]
Mohebalhojeh, Alireza [2 ]
机构
[1] Iran Univ Sci & Technol, Sch Comp Engn, Univ Rd,Hengam St,Resalat Sq, Tehran 1684613114, Iran
[2] Univ Tehran, Inst Geophys, Tehran, Iran
关键词
Feature selection; regression ensemble; spatio-temporal modeling; data driven modeling; Numerical Weather Prediction; ENSEMBLE PREDICTION SYSTEM; METROPOLITAN-AREAS; NEURAL-NETWORK; HIGH-RESOLUTION; WIND; RAINFALL; CLASSIFIERS; IMPACT; REGION; LEVEL;
D O I
10.3233/IDA-150494
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new data-driven method for short-range forecasting of spatio-temporal systems is proposed. It uses NCEP data as raw data to construct forecasting model. The global model consists of several local models. Each local model is constructed in three steps. In the first step, a local dataset is constructed based on NCEP raw data. This dataset is a very high-dimensional data with huge number of redundant and irrelevant features. In the second step, a feature selection method named GRASP is applied on the local dataset and produces a new local dataset whose features are reduced significantly. In the third step, a regression ensemble method called Bagging is used to construct a local model. Both GRASP and Bagging methods are scalable modules with respect to the computational power needed. The proposed method makes it possible to control the trade-off between speed and precision. In addition to the scalability, the proposed method, in some points produces forecasts more precise than the GFS system.
引用
收藏
页码:577 / 595
页数:19
相关论文
共 50 条
  • [1] Spatio-Temporal Forecasting: A Survey of Data-Driven Models Using Exogenous Data
    Berkani, Safaa
    Guermah, Bassma
    Zakroum, Mehdi
    Ghogho, Mounir
    [J]. IEEE ACCESS, 2023, 11 : 75191 - 75214
  • [2] Data-driven spatio-temporal modelling of glioblastoma
    Jorgensen, Andreas Christ Solvsten
    Hill, Ciaran Scott
    Sturrock, Marc
    Tang, Wenhao
    Karamched, Saketh R.
    Gorup, Dunja
    Lythgoe, Mark F.
    Parrinello, Simona
    Marguerat, Samuel
    Shahrezaei, Vahid
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (03):
  • [3] Applied Koopman Theory for Partial Differential Equations and Data-Driven Modeling of Spatio-Temporal Systems
    Kutz, J. Nathan
    Proctor, J. L.
    Brunton, S. L.
    [J]. COMPLEXITY, 2018,
  • [4] Visual Analysis of Spatio-Temporal Data: Applications in Weather Forecasting
    Diehl, A.
    Pelorosso, L.
    Delrieux, C.
    Saulo, C.
    Ruiz, J.
    Groeller, M. E.
    Bruckner, S.
    [J]. COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 381 - 390
  • [5] Spatio-Temporal Forecasting of Weather-Driven Damage in a Distribution System
    Li, Zhiguo
    Singhee, Amith
    Wang, Haijing
    Raman, Abhishek
    Siegel, Stuart
    Heng, Fook-Luen
    Mueller, Richard
    Labut, Gerard
    [J]. 2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [6] Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation
    Dewar, Michael
    Scerri, Kenneth
    Kadirkamanathan, Visakan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) : 83 - 91
  • [7] Data-driven Comparison of Spatio-temporal Monitoring Techniques
    Caley, Jeffrey A.
    Hollinger, Geoffrey A.
    [J]. OCEANS 2015 - MTS/IEEE WASHINGTON, 2015,
  • [8] Data-driven spatio-temporal analysis of wildfire risk to power systems operation
    Umunnakwe, Amarachi
    Parvania, Masood
    Nguyen, Hieu
    Horel, John D.
    Davis, Katherine R.
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2022, 16 (13) : 2531 - 2546
  • [9] Data Driven Spatio-Temporal Modeling of Parking Demand
    Fiez, Tanner
    Ratliff, Lillian J.
    Dowling, Chase
    Zhang, Baosen
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2757 - 2762
  • [10] Spatio-Temporal Analysis and Forecasting of Distributed PV Systems Diffusion: A Case Study of Shanghai Using a Data-Driven Approach
    Zhao, Teng
    Zhou, Ziqiang
    Zhang, Yan
    Ling, Ping
    Tian, Yingjie
    [J]. IEEE ACCESS, 2017, 5 : 5135 - 5148