Data-driven spatio-temporal modelling of glioblastoma

被引:0
|
作者
Jorgensen, Andreas Christ Solvsten [1 ]
Hill, Ciaran Scott [2 ,3 ]
Sturrock, Marc [4 ]
Tang, Wenhao [1 ]
Karamched, Saketh R. [5 ]
Gorup, Dunja [5 ]
Lythgoe, Mark F. [5 ]
Parrinello, Simona [3 ]
Marguerat, Samuel [6 ]
Shahrezaei, Vahid [1 ]
机构
[1] Imperial Coll London, Fac Nat Sci, Dept Math, London SW7 2AZ, England
[2] Natl Hosp Neurol & Neurosurg, Dept Neurosurg, London WC1N 3BG, England
[3] UCL Canc Inst, Samantha Dickson Brain Canc Unit, London WC1E 6DD, England
[4] Royal Coll Surgeons Ireland, Dept Physiol & Med Phys, Dublin D02 YN77, Ireland
[5] Univ Coll London UCL, Ctr Adv Biomed Imaging, Div Med, London WC1E 6BT, England
[6] UCL, UCL Canc Inst, Genom Translat Technol Platform, London WC1E 6DD, England
来源
ROYAL SOCIETY OPEN SCIENCE | 2023年 / 10卷 / 03期
关键词
agent-based modelling; glioblastoma; reaction-diffusion equations; Bayesian inference; data-driven modelling; EXACT STOCHASTIC SIMULATION; NONLINEAR TUMOR-GROWTH; CANCER STEM-CELLS; GLIOMA GROWTH; IN-VITRO; ADJUVANT TEMOZOLOMIDE; COMPUTER-SIMULATION; MATHEMATICAL-MODELS; CELLULAR-AUTOMATON; MULTISCALE MODEL;
D O I
10.1098/rsos.221444
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Data-driven Comparison of Spatio-temporal Monitoring Techniques
    Caley, Jeffrey A.
    Hollinger, Geoffrey A.
    [J]. OCEANS 2015 - MTS/IEEE WASHINGTON, 2015,
  • [2] Data-driven spatio-temporal discretization for pedestrian flow characterization
    Nikolic, Marija
    Bierlaire, Michel
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2018, 94 : 185 - 202
  • [3] Data-driven spatio-temporal analysis of consolidation for rapid reclamation
    Shi, Chao
    Wang, Yu
    [J]. GEOTECHNIQUE, 2023, 74 (07): : 676 - 696
  • [4] Data-driven spatio-temporal discretization for pedestrian flow characterization
    Nikolic, Marija
    Bierlaire, Michel
    [J]. PAPERS SELECTED FOR THE 22ND INTERNATIONAL SYMPOSIUM ON TRANSPORTATION AND TRAFFIC THEORY, 2017, 23 : 188 - 207
  • [5] Spatio-temporal identification of hemodynamics in fMRI: A data-driven approach
    Yan, LR
    Hu, DW
    Zhou, ZT
    Liu, YD
    [J]. MEDICAL IMAGING AND AUGMENTED REALITY, PROCEEDINGS, 2004, 3150 : 213 - 220
  • [6] Data-driven generation of spatio-temporal routines in human mobility
    Pappalardo, Luca
    Simini, Filippo
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (03) : 787 - 829
  • [7] Data-driven generation of spatio-temporal routines in human mobility
    Luca Pappalardo
    Filippo Simini
    [J]. Data Mining and Knowledge Discovery, 2018, 32 : 787 - 829
  • [8] Spatio-Temporal Forecasting: A Survey of Data-Driven Models Using Exogenous Data
    Berkani, Safaa
    Guermah, Bassma
    Zakroum, Mehdi
    Ghogho, Mounir
    [J]. IEEE ACCESS, 2023, 11 : 75191 - 75214
  • [9] Big Data-Driven Approach to Analyzing Spatio-Temporal Mobility Pattern
    Aljeri, Munairah
    [J]. IEEE ACCESS, 2022, 10 : 98414 - 98426
  • [10] A Data-driven Approach for Spatio-Temporal Crime Predictions in Smart Cities
    Catlett, Charlie
    Cesario, Eugenio
    Talia, Domenico
    Vinci, Andrea
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2018), 2018, : 17 - 24