Data-driven spatio-temporal modelling of glioblastoma

被引:0
|
作者
Jorgensen, Andreas Christ Solvsten [1 ]
Hill, Ciaran Scott [2 ,3 ]
Sturrock, Marc [4 ]
Tang, Wenhao [1 ]
Karamched, Saketh R. [5 ]
Gorup, Dunja [5 ]
Lythgoe, Mark F. [5 ]
Parrinello, Simona [3 ]
Marguerat, Samuel [6 ]
Shahrezaei, Vahid [1 ]
机构
[1] Imperial Coll London, Fac Nat Sci, Dept Math, London SW7 2AZ, England
[2] Natl Hosp Neurol & Neurosurg, Dept Neurosurg, London WC1N 3BG, England
[3] UCL Canc Inst, Samantha Dickson Brain Canc Unit, London WC1E 6DD, England
[4] Royal Coll Surgeons Ireland, Dept Physiol & Med Phys, Dublin D02 YN77, Ireland
[5] Univ Coll London UCL, Ctr Adv Biomed Imaging, Div Med, London WC1E 6BT, England
[6] UCL, UCL Canc Inst, Genom Translat Technol Platform, London WC1E 6DD, England
来源
ROYAL SOCIETY OPEN SCIENCE | 2023年 / 10卷 / 03期
关键词
agent-based modelling; glioblastoma; reaction-diffusion equations; Bayesian inference; data-driven modelling; EXACT STOCHASTIC SIMULATION; NONLINEAR TUMOR-GROWTH; CANCER STEM-CELLS; GLIOMA GROWTH; IN-VITRO; ADJUVANT TEMOZOLOMIDE; COMPUTER-SIMULATION; MATHEMATICAL-MODELS; CELLULAR-AUTOMATON; MULTISCALE MODEL;
D O I
10.1098/rsos.221444
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mathematical oncology provides unique and invaluable insights into tumour growth on both the microscopic and macroscopic levels. This review presents state-of-the-art modelling techniques and focuses on their role in understanding glioblastoma, a malignant form of brain cancer. For each approach, we summarize the scope, drawbacks and assets. We highlight the potential clinical applications of each modelling technique and discuss the connections between the mathematical models and the molecular and imaging data used to inform them. By doing so, we aim to prime cancer researchers with current and emerging computational tools for understanding tumour progression. By providing an in-depth picture of the different modelling techniques, we also aim to assist researchers who seek to build and develop their own models and the associated inference frameworks. Our article thus strikes a unique balance. On the one hand, we provide a comprehensive overview of the available modelling techniques and their applications, including key mathematical expressions. On the other hand, the content is accessible to mathematicians and biomedical scientists alike to accommodate the interdisciplinary nature of cancer research.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] A Spatio-Temporal Data-Driven Automatic Control Method for Smart Home Services
    Chen, Jinrong
    Chen, Zheyi
    Zheng, Longhai
    Chen, Xing
    [J]. COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 948 - 955
  • [22] Spatio-temporal crime predictions in smart cities: A data-driven approach and experiments
    Catlett, Charlie
    Cesario, Eugenio
    Talia, Domenico
    Vinci, Andrea
    [J]. PERVASIVE AND MOBILE COMPUTING, 2019, 53 : 62 - 74
  • [23] Multitime-Scale Data-Driven Spatio-Temporal Forecast of Photovoltaic Generation
    Yang, Chen
    Thatte, Anupam A.
    Xie, Le
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (01) : 104 - 112
  • [24] Data-Driven Approaches for Spatio-Temporal Analysis: A Survey of the State-of-the-Arts
    Monidipa Das
    Soumya K. Ghosh
    [J]. Journal of Computer Science and Technology, 2020, 35 : 665 - 696
  • [25] Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation
    Dewar, Michael
    Scerri, Kenneth
    Kadirkamanathan, Visakan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) : 83 - 91
  • [26] On a Semiparametric Data-Driven Nonlinear Model with Penalized Spatio-Temporal Lag Interactions
    Al-Sulami, Dawlah
    Jiang, Zhenyu
    Lu, Zudi
    Zhu, Jun
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (03) : 327 - 342
  • [27] Data-driven spatio-temporal analysis of wildfire risk to power systems operation
    Umunnakwe, Amarachi
    Parvania, Masood
    Nguyen, Hieu
    Horel, John D.
    Davis, Katherine R.
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2022, 16 (13) : 2531 - 2546
  • [28] Spatio-temporal data-driven detection of false data injection attacks in power distribution systems
    Musleh, Ahmed S.
    Chen, Guo
    Dong, Zhao Yang
    Wang, Chen
    Chen, Shiping
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 145
  • [29] Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach
    Voulis, Nina
    Warnier, Martijn
    Brazier, Frances M. T.
    [J]. APPLIED ENERGY, 2018, 230 : 1157 - 1171
  • [30] Data-driven spatio-temporal RGBD feature encoding for action recognition in operating rooms
    Andru P. Twinanda
    Emre O. Alkan
    Afshin Gangi
    Michel de Mathelin
    Nicolas Padoy
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2015, 10 : 737 - 747