Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation

被引:24
|
作者
Dewar, Michael [1 ]
Scerri, Kenneth [2 ]
Kadirkamanathan, Visakan [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
关键词
Dynamic spatio-temporal modeling; expectation-maximization (EM) algorithm; Integro-Difference Equation (IDE); maximum-likelihood parameter estimation; state-space; MAXIMUM-LIKELIHOOD; IDENTIFICATION; DISPERSAL;
D O I
10.1109/TSP.2008.2005091
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A continuous-in-space, discrete-in-time dynamic spatio-temporal model known as the Integro-Difference Equation (IDE) model is presented in the context of data-driven modeling. A novel decomposition of the IDE is derived, leading to state-space representation that does not couple the number of states with the number of observation locations or the number of parameters. Based on this state-space model, an expectation-maximization (EM) algorithm is developed in order to jointly estimate the IDE model's spatial field and spatial mixing kernel. The resulting modeling framework is demonstrated on a set of examples.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [31] A novel spatio-temporal trajectory data-driven development approach for autonomous vehicles
    Menghan Zhang
    Mingjun Ma
    Jingying Zhang
    Mingzhuo Zhang
    Bo Li
    Dehui Du
    [J]. Frontiers of Earth Science, 2021, 15 : 620 - 630
  • [32] BSENet: A Data-Driven Spatio-Temporal Representation Learning for Base Station Embedding
    Wang, Xinyu
    Yang, Tan
    Cui, Yidong
    Jin, Yuehui
    Wang, Hongbo
    [J]. IEEE ACCESS, 2020, 8 : 51674 - 51683
  • [33] A Spatio-Temporal Data-Driven Automatic Control Method for Smart Home Services
    Chen, Jinrong
    Chen, Zheyi
    Zheng, Longhai
    Chen, Xing
    [J]. COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 948 - 955
  • [34] Comparing Micromobility with Public Transportation Trips in a Data-Driven Spatio-Temporal Analysis
    Schwinger, Felix
    Tanriverdi, Baran
    Jarke, Matthias
    [J]. SUSTAINABILITY, 2022, 14 (14)
  • [35] Spatio-temporal crime predictions in smart cities: A data-driven approach and experiments
    Catlett, Charlie
    Cesario, Eugenio
    Talia, Domenico
    Vinci, Andrea
    [J]. PERVASIVE AND MOBILE COMPUTING, 2019, 53 : 62 - 74
  • [36] Data-Driven Approaches for Spatio-Temporal Analysis: A Survey of the State-of-the-Arts
    Monidipa Das
    Soumya K. Ghosh
    [J]. Journal of Computer Science and Technology, 2020, 35 : 665 - 696
  • [37] Multitime-Scale Data-Driven Spatio-Temporal Forecast of Photovoltaic Generation
    Yang, Chen
    Thatte, Anupam A.
    Xie, Le
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (01) : 104 - 112
  • [38] On a Semiparametric Data-Driven Nonlinear Model with Penalized Spatio-Temporal Lag Interactions
    Al-Sulami, Dawlah
    Jiang, Zhenyu
    Lu, Zudi
    Zhu, Jun
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (03) : 327 - 342
  • [39] Data-driven spatio-temporal analysis of wildfire risk to power systems operation
    Umunnakwe, Amarachi
    Parvania, Masood
    Nguyen, Hieu
    Horel, John D.
    Davis, Katherine R.
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2022, 16 (13) : 2531 - 2546
  • [40] Data-driven spatio-temporal dynamic brain connectivity analysis using fALFF: Application to sensorimotor task data
    Hossain, Khondoker Murad
    Bhinge, Suchita
    Long, Qunfang
    Calhoun, Vince D.
    Adali, Tulay
    [J]. 2022 56TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2022, : 200 - 205