Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation

被引:24
|
作者
Dewar, Michael [1 ]
Scerri, Kenneth [2 ]
Kadirkamanathan, Visakan [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
关键词
Dynamic spatio-temporal modeling; expectation-maximization (EM) algorithm; Integro-Difference Equation (IDE); maximum-likelihood parameter estimation; state-space; MAXIMUM-LIKELIHOOD; IDENTIFICATION; DISPERSAL;
D O I
10.1109/TSP.2008.2005091
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A continuous-in-space, discrete-in-time dynamic spatio-temporal model known as the Integro-Difference Equation (IDE) model is presented in the context of data-driven modeling. A novel decomposition of the IDE is derived, leading to state-space representation that does not couple the number of states with the number of observation locations or the number of parameters. Based on this state-space model, an expectation-maximization (EM) algorithm is developed in order to jointly estimate the IDE model's spatial field and spatial mixing kernel. The resulting modeling framework is demonstrated on a set of examples.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [21] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    [J]. PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [22] Asymptotic Regimes of an Integro-Difference Equation with Discontinuous Kernel
    Halim, Omar Abdul
    El Smaily, Mohammad
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (02) : 1367 - 1404
  • [23] Big Data-Driven Approach to Analyzing Spatio-Temporal Mobility Pattern
    Aljeri, Munairah
    [J]. IEEE ACCESS, 2022, 10 : 98414 - 98426
  • [24] A Data-driven Approach for Spatio-Temporal Crime Predictions in Smart Cities
    Catlett, Charlie
    Cesario, Eugenio
    Talia, Domenico
    Vinci, Andrea
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2018), 2018, : 17 - 24
  • [25] Data-driven Spatio-Temporal Scaling of Travel Times for AMoD Simulations
    Syed, Arslan Ali
    Zhang, Yunfei
    Bogenberger, Klaus
    [J]. 2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 3583 - 3588
  • [26] Lagrangian Integro-Difference Equation Model for Precipitation Nowcasting
    Pulkkinen, Seppo
    Chandrasekar, V.
    Niemi, Tero
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2021, 38 (12) : 2125 - 2145
  • [27] Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling
    Shi, Yan
    Wang, Da
    Deng, Min
    Yang, Xuexi
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2024, 53 (08): : 1493 - 1504
  • [28] Data-Driven Approaches for Spatio-Temporal Analysis: A Survey of the State-of-the-Arts
    Das, Monidipa
    Ghosh, Soumya K.
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (03) : 665 - 696
  • [29] A novel spatio-temporal trajectory data-driven development approach for autonomous vehicles
    Menghan ZHANG
    Mingjun MA
    Jingying ZHANG
    Mingzhuo ZHANG
    Bo LI
    Dehui DU
    [J]. Frontiers of Earth Science., 2021, (03) - 630
  • [30] A novel spatio-temporal trajectory data-driven development approach for autonomous vehicles
    Zhang, Menghan
    Ma, Mingjun
    Zhang, Jingying
    Zhang, Mingzhuo
    Li, Bo
    Du, Dehui
    [J]. FRONTIERS OF EARTH SCIENCE, 2021, 15 (03) : 620 - 630