Spectral solution of delayed random walks

被引:0
|
作者
Bhat, H. S. [1 ]
Kumar, N. [1 ]
机构
[1] Univ Calif, Appl Math Unit, Merced, CA 95343 USA
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 04期
关键词
PERSISTENT;
D O I
10.1103/PhysRevE.86.045701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a spectral method for computing the probability density function for delayed random walks; for such problems, the method is exact to machine precision and faster than existing approaches. In conjunction with a step function approximation and the weak Euler-Maruyama discretization, the spectral method can be applied to nonlinear stochastic delay differential equations (SDDE). In essence, this means approximating the SDDE by a delayed random walk, which is then solved using the spectral method. We carry out tests for a particular nonlinear SDDE that show that this method captures the solution without the need for Monte Carlo sampling.
引用
收藏
页数:4
相关论文
共 50 条