Spectral solution of delayed random walks

被引:0
|
作者
Bhat, H. S. [1 ]
Kumar, N. [1 ]
机构
[1] Univ Calif, Appl Math Unit, Merced, CA 95343 USA
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 04期
关键词
PERSISTENT;
D O I
10.1103/PhysRevE.86.045701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a spectral method for computing the probability density function for delayed random walks; for such problems, the method is exact to machine precision and faster than existing approaches. In conjunction with a step function approximation and the weak Euler-Maruyama discretization, the spectral method can be applied to nonlinear stochastic delay differential equations (SDDE). In essence, this means approximating the SDDE by a delayed random walk, which is then solved using the spectral method. We carry out tests for a particular nonlinear SDDE that show that this method captures the solution without the need for Monte Carlo sampling.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Quenched central limit theorem for random walks with a spectral gap
    Conze, Jean-Pierre
    Le Borgne, Stephane
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (13-14) : 801 - 805
  • [32] Spectral multipliers without semigroup framework and application to random walks
    Chen, Peng
    Ouhabaz, El Maati
    Sikora, Adam
    Yan, Lixin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 143 : 162 - 191
  • [33] A Spectral Gap Property for Random Walks Under Unitary Representations
    Bachir Bekka
    Yves Guivarc’h
    Geometriae Dedicata, 2006, 118 : 141 - 155
  • [34] Strong relative property (T) and spectral gap of random walks
    Raja, C. R. E.
    GEOMETRIAE DEDICATA, 2013, 164 (01) : 9 - 25
  • [35] Asymptotics and spectral results for random walks on p-adics
    Albeverio, S
    Karwowski, W
    Zhao, XL
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 83 (01) : 39 - 59
  • [36] Determining average trapping time of delayed random walks on Apollonian network
    Zhang, Huai
    Zhang, Hongjuan
    MODERN PHYSICS LETTERS B, 2019, 33 (20):
  • [37] Are random walks random?
    Nogues, J
    Costa-Kramer, JL
    Rao, KV
    PHYSICA A, 1998, 250 (1-4): : 327 - 334
  • [38] EXACT SOLUTION FOR THE RESISTANCE OF RANDOM-WALKS ON A CAYLEY TREE
    HARRIS, AB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (13): : 4391 - 4397
  • [39] RANDOM WALKS ALONG SOLUTION PATHS OF ORDINARY DIFFERENTIAL EQUATIONS
    KURTH, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1966, 223 (AUG): : 16 - &
  • [40] On random walks and switched random walks on homogeneous spaces
    Moreno, Elvira
    Velasco, Mauricio
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (03) : 398 - 421