Spectral solution of delayed random walks

被引:0
|
作者
Bhat, H. S. [1 ]
Kumar, N. [1 ]
机构
[1] Univ Calif, Appl Math Unit, Merced, CA 95343 USA
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 04期
关键词
PERSISTENT;
D O I
10.1103/PhysRevE.86.045701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a spectral method for computing the probability density function for delayed random walks; for such problems, the method is exact to machine precision and faster than existing approaches. In conjunction with a step function approximation and the weak Euler-Maruyama discretization, the spectral method can be applied to nonlinear stochastic delay differential equations (SDDE). In essence, this means approximating the SDDE by a delayed random walk, which is then solved using the spectral method. We carry out tests for a particular nonlinear SDDE that show that this method captures the solution without the need for Monte Carlo sampling.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] On an effective solution of the optimal stopping problem for random walks
    Novikov, AA
    Shiryaev, AN
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2004, 49 (02) : 344 - 354
  • [22] Incremental Solution of Power Grids using Random Walks
    Boghrati, Baktash
    Sapatnekar, Sachin
    2010 15TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2010), 2010, : 748 - 753
  • [23] A Recommender System Based on Local Random Walks and Spectral Methods
    Abbassi, Zeinab
    Mirrokni, Vahab S.
    ADVANCES IN WEB MINING AND WEB USAGE ANALYSIS, 2009, 5439 : 139 - +
  • [24] Stable laws and spectral gap properties for affine random walks
    Gao, Zhiqiang
    Guivarc'h, Yves
    Le Page, Emile
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (01): : 319 - 348
  • [25] Strong relative property (T) and spectral gap of random walks
    C. R. E. Raja
    Geometriae Dedicata, 2013, 164 : 9 - 25
  • [26] A spectral gap property for random walks under unitary representations
    Bekka, Bachir
    Guivarch, Yves
    GEOMETRIAE DEDICATA, 2006, 118 (01) : 141 - 155
  • [27] Random walks, spectral gaps, and Khintchine’s theorem on fractals
    Osama Khalil
    Manuel Luethi
    Inventiones mathematicae, 2023, 232 : 713 - 831
  • [28] Random walks, spectral gaps, and Khintchine's theorem on fractals
    Khalil, Osama
    Luethi, Manuel
    INVENTIONES MATHEMATICAE, 2023, 232 (02) : 713 - 831
  • [29] Spectral properties of a class of random walks on locally finite groups
    Bendikov, Alexander
    Bobikau, Barbara
    Pittet, Christophe
    GROUPS GEOMETRY AND DYNAMICS, 2013, 7 (04) : 791 - 820
  • [30] Erratum to: High Order Random Walks: Beyond Spectral Gap
    Tali Kaufman
    Izhar Oppenheim
    Combinatorica, 2021, 41 : 749 - 753