Exact solution for random walks on the triangular lattice with absorbing boundaries

被引:9
|
作者
Batchelor, MT [1 ]
Henry, BI
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Theoret Phys, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Sch Math Sci, Ctr Math & Applicat, Canberra, ACT 0200, Australia
[3] Univ New S Wales, Sch Math, Dept Appl Math, Sydney, NSW 2052, Australia
来源
关键词
D O I
10.1088/0305-4470/35/29/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.
引用
收藏
页码:5951 / 5959
页数:9
相关论文
共 50 条
  • [1] Triangular trimers on the triangular lattice: An exact solution
    Verberkmoes, A
    Nienhuis, B
    PHYSICAL REVIEW LETTERS, 1999, 83 (20) : 3986 - 3989
  • [2] First passage time distribution in random walks with absorbing boundaries
    Nagar, A
    Pradhan, P
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 320 : 141 - 148
  • [3] HIGHER MOMENTS OF PHASE OPERATORS AND RANDOM-WALKS WITH ABSORBING BOUNDARIES
    SUKUMAR, CV
    PHYSICAL REVIEW A, 1989, 39 (03): : 1558 - 1560
  • [4] Mean absorption time of two dimensional random walks with absorbing boundaries
    Tang, Jiashan
    Nanjing Youdian Xueyuan Xuebao/Journal of Nanjing Institute of Posts and Telecommunications, 2000, 20 (04): : 41 - 43
  • [5] OCCUPANCY TIME FOR CORRELATED RANDOM-WALKS WITH PARTIALLY ABSORBING BOUNDARIES
    UNNIKRISHNAN, K
    PRASAD, MA
    ACTA PHYSICA AUSTRIACA, 1985, 56 (04): : 253 - 257
  • [6] Exact solution of some quarter plane walks with interacting boundaries
    Beaton, N. R.
    Owczarek, A. L.
    Rechnitzer, A.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [7] Gene!Stanley, the n-vector model and random walks with absorbing boundaries
    Batchelor, MT
    Henry, BI
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 314 (1-4) : 77 - 82
  • [8] Grover walks on a line with absorbing boundaries
    Wang, Kun
    Wu, Nan
    Kuklinski, Parker
    Xu, Ping
    Hu, Haixing
    Song, Fangmin
    QUANTUM INFORMATION PROCESSING, 2016, 15 (09) : 3573 - 3597
  • [9] Grover walks on a line with absorbing boundaries
    Kun Wang
    Nan Wu
    Parker Kuklinski
    Ping Xu
    Haixing Hu
    Fangmin Song
    Quantum Information Processing, 2016, 15 : 3573 - 3597
  • [10] EXACT SOLUTION FOR THE RESISTANCE OF RANDOM-WALKS ON A CAYLEY TREE
    HARRIS, AB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (13): : 4391 - 4397