Fibonacci (p, r)-cubes which are median graphs

被引:7
|
作者
Ou, Lifeng [1 ,2 ]
Zhang, Heping [3 ]
机构
[1] NW Univ Nationalities, Sch Math, Lanzhou 730030, Gansu, Peoples R China
[2] NW Univ Nationalities, Inst Comp Sci, Lanzhou 730030, Gansu, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Hypercube; Fibonacci; (p; r)-cube; Median graph; ENUMERATIVE PROPERTIES; RESONANCE GRAPHS; CUBES;
D O I
10.1016/j.dam.2012.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fibonacci (p, r)-cube is an interconnection topology, which unifies a wide range of connection topologies, such as hypercube, Fibonacci cube, postal network, etc. It is known that the Fibonacci cubes are median graphs IS. Klavzar, On median nature and enumerative properties of Fibonacci-like cubes, Discrete Math. 299 (2005) 145-153]. The question for determining which Fibonacci (p, r)-cubes are median graphs is solved completely in this paper. We show that Fibonacci (p, r)-cubes are median graphs if and only if either r <= p and r <= 2, or p = 1 and r = n. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:441 / 444
页数:4
相关论文
共 50 条
  • [41] Structure of Fibonacci cubes: a survey
    Sandi Klavžar
    [J]. Journal of Combinatorial Optimization, 2013, 25 : 505 - 522
  • [42] Hierarchical extended Fibonacci cubes
    Karci, A
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2005, 29 (B1): : 117 - 125
  • [43] Fast Recognition of Fibonacci Cubes
    Andrej Taranenko
    Aleksander Vesel
    [J]. Algorithmica, 2007, 49 : 81 - 93
  • [44] The Larger Bound on the Domination Number of Fibonacci Cubes and Lucas Cubes
    Ren, Shengzhang
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [45] Edge-counting vectors, Fibonacci cubes, and Fibonacci triangle
    Klavzar, Sandi
    Peterin, Iztok
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 71 (3-4): : 267 - 278
  • [46] On median graphs and median grid graphs
    Klavzar, S
    Skrekovski, R
    [J]. DISCRETE MATHEMATICS, 2000, 219 (1-3) : 287 - 293
  • [47] Fibonacci Graphs
    Yurttas Gunes, Aysun
    Delen, Sadik
    Demirci, Musa
    Cevik, Ahmet Sinan
    Cangul, Ismail Naci
    [J]. SYMMETRY-BASEL, 2020, 12 (09):
  • [48] Euler numbers and diametral paths in Fibonacci cubes, Lucas cubes and alternate Lucas cubes
    Egecioglu, Omer
    Saygi, Elif
    Saygi, Zulfukar
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (03)
  • [49] On isomorphism classes of generalized Fibonacci cubes
    Azarija, Jernej
    Klavzar, Sandi
    Lee, Jaehun
    Pantone, Jay
    Rho, Yoomi
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 372 - 379
  • [50] FIBONACCI GRAPHS
    Tedford, Steven J.
    [J]. FIBONACCI QUARTERLY, 2019, 57 (04): : 347 - 355