The Larger Bound on the Domination Number of Fibonacci Cubes and Lucas Cubes

被引:0
|
作者
Ren, Shengzhang [1 ,2 ]
机构
[1] Shaanxi Univ Technol Hanzhong, Sch Math & Comp Sci, Hanzhong 723001, Shaanxi, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Gansu, Peoples R China
关键词
OBSERVABILITY;
D O I
10.1155/2014/954738
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma(n) and Lambda(n) be the n-dimensional Fibonacci cube and Lucas cube, respectively. Denote by Gamma[u(n,k,z)] the subgraph of Gamma(n) induced by the end-vertex u(n,k,z) that has no up-neighbor. In this paper, the number of end-vertices and domination number gamma of Gamma(n) and Lambda(n) are studied. The formula of calculating the number of end-vertices is given and it is proved that gamma(Gamma[u(n,k,z)]) <= 2(k-1) + 1. Using these results, the larger bound on the domination number gamma of Gamma(n) and Lambda(n) is determined.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On the domination number and the 2-packing number of Fibonacci cubes and Lucas cubes
    Castro, Aline
    Klavzar, Sandi
    Mollard, Michel
    Rho, Yoomi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2655 - 2660
  • [2] On the domination number and the total domination number of Fibonacci cubes
    Saygi, Elif
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (01) : 245 - 255
  • [3] Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes
    Azarija, Jernej
    Klavzar, Sandi
    Lee, Jaehun
    Rho, Yoomi
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 79 - 88
  • [4] Results on the domination number and the total domination number of Lucas cubes
    Saygi, Zulfukar
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2020, 19 (01) : 25 - 35
  • [5] FIBONACCI AND LUCAS CUBES
    LAGARIAS, JC
    WEISSER, DP
    [J]. FIBONACCI QUARTERLY, 1981, 19 (01): : 39 - 43
  • [6] Edges in Fibonacci Cubes, Lucas Cubes and Complements
    Mollard, Michel
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 4425 - 4437
  • [7] Asymptotic Properties of Fibonacci Cubes and Lucas Cubes
    Sandi Klavžar
    Michel Mollard
    [J]. Annals of Combinatorics, 2014, 18 : 447 - 457
  • [8] Asymptotic Properties of Fibonacci Cubes and Lucas Cubes
    Klavzar, Sandi
    Mollard, Michel
    [J]. ANNALS OF COMBINATORICS, 2014, 18 (03) : 447 - 457
  • [9] Edges in Fibonacci Cubes, Lucas Cubes and Complements
    Michel Mollard
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 4425 - 4437
  • [10] Euler numbers and diametral paths in Fibonacci cubes, Lucas cubes and alternate Lucas cubes
    Egecioglu, Omer
    Saygi, Elif
    Saygi, Zulfukar
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (03)