Euler numbers and diametral paths in Fibonacci cubes, Lucas cubes and alternate Lucas cubes

被引:1
|
作者
Egecioglu, Omer [1 ]
Saygi, Elif [2 ]
Saygi, Zulfukar [3 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Hacettepe Univ, Dept Math & Sci Educ, TR-06800 Ankara, Turkiye
[3] TOBB Univ Econ & Technol, Dept Math, TR-06560 Ankara, Turkiye
关键词
Shortest path; diametral path; Fibonacci cube; Lucas cube; alternate Lucas cube; Euler number;
D O I
10.1142/S1793830923500271
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The diameter of a graph is the maximum distance between pairs of vertices in the graph. A pair of vertices whose distance is equal to its diameter is called diametrically opposite vertices. The collection of shortest paths between diametrically opposite vertices is referred as diametral paths. In this work, we enumerate the number of diametral paths for Fibonacci cubes, Lucas cubes and alternate Lucas cubes. We present bijective proofs that show that these numbers are related to alternating permutations and are enumerated by Euler numbers.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes
    Azarija, Jernej
    Klavzar, Sandi
    Lee, Jaehun
    Rho, Yoomi
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 79 - 88
  • [2] FIBONACCI AND LUCAS CUBES
    LAGARIAS, JC
    WEISSER, DP
    [J]. FIBONACCI QUARTERLY, 1981, 19 (01): : 39 - 43
  • [3] Edges in Fibonacci Cubes, Lucas Cubes and Complements
    Mollard, Michel
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 4425 - 4437
  • [4] Asymptotic Properties of Fibonacci Cubes and Lucas Cubes
    Sandi Klavžar
    Michel Mollard
    [J]. Annals of Combinatorics, 2014, 18 : 447 - 457
  • [5] Asymptotic Properties of Fibonacci Cubes and Lucas Cubes
    Klavzar, Sandi
    Mollard, Michel
    [J]. ANNALS OF COMBINATORICS, 2014, 18 (03) : 447 - 457
  • [6] Edges in Fibonacci Cubes, Lucas Cubes and Complements
    Michel Mollard
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 4425 - 4437
  • [7] Alternate Lucas Cubes
    Egecioglu, Omer
    Saygi, Elif
    Saygi, Zulfukar
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2021, 32 (07) : 871 - 899
  • [8] The parameters of Fibonacci and Lucas cubes
    Ilic, Aleksandar
    Milosevic, Marko
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2017, 12 (01) : 25 - 29
  • [9] On the Wiener index of generalized Fibonacci cubes and Lucas cubes
    Klavzar, Sandi
    Rho, Yoomi
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 187 : 155 - 160
  • [10] The observability of the Fibonacci and the Lucas cubes
    Dedó, E
    Torri, D
    Salvi, NZ
    [J]. DISCRETE MATHEMATICS, 2002, 255 (1-3) : 55 - 63