Fibonacci (p, r)-cubes which are median graphs

被引:7
|
作者
Ou, Lifeng [1 ,2 ]
Zhang, Heping [3 ]
机构
[1] NW Univ Nationalities, Sch Math, Lanzhou 730030, Gansu, Peoples R China
[2] NW Univ Nationalities, Inst Comp Sci, Lanzhou 730030, Gansu, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Hypercube; Fibonacci; (p; r)-cube; Median graph; ENUMERATIVE PROPERTIES; RESONANCE GRAPHS; CUBES;
D O I
10.1016/j.dam.2012.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fibonacci (p, r)-cube is an interconnection topology, which unifies a wide range of connection topologies, such as hypercube, Fibonacci cube, postal network, etc. It is known that the Fibonacci cubes are median graphs IS. Klavzar, On median nature and enumerative properties of Fibonacci-like cubes, Discrete Math. 299 (2005) 145-153]. The question for determining which Fibonacci (p, r)-cubes are median graphs is solved completely in this paper. We show that Fibonacci (p, r)-cubes are median graphs if and only if either r <= p and r <= 2, or p = 1 and r = n. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:441 / 444
页数:4
相关论文
共 50 条
  • [31] Structure of Fibonacci cubes: a survey
    Klavzar, Sandi
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 505 - 522
  • [32] EFFICIENT RECOGNITION OF FIBONACCI CUBES
    Vesel, Aleksander
    [J]. SOR'13 PROCEEDINGS: THE 12TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA, 2013, : 167 - 171
  • [33] On disjoint hypercubes in Fibonacci cubes
    Gravier, Sylvain
    Mollard, Michel
    Spacapan, Simon
    Zemljic, Sara Sabrina
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 190 : 50 - 55
  • [34] Fast recognition of Fibonacci cubes
    Taranenko, Andrej
    Vesel, Aleksander
    [J]. ALGORITHMICA, 2007, 49 (02) : 81 - 93
  • [35] On the sizes of extended Fibonacci cubes
    Scarano, V
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1999, 10 (07) : 764 - 766
  • [36] On a problem on generalised Fibonacci cubes
    Hilberdink, T
    Whitehead, C
    Salvi, NZ
    [J]. ARS COMBINATORIA, 2003, 68 : 39 - 47
  • [37] The parameters of Fibonacci and Lucas cubes
    Ilic, Aleksandar
    Milosevic, Marko
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2017, 12 (01) : 25 - 29
  • [38] The observability of the Fibonacci and the Lucas cubes
    Dedó, E
    Torri, D
    Salvi, NZ
    [J]. DISCRETE MATHEMATICS, 2002, 255 (1-3) : 55 - 63
  • [39] FULL CUBES IN THE FIBONACCI SEQUENCE
    PETHO, A
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1983, 30 (1-2): : 117 - 127
  • [40] On the Wiener index of generalized Fibonacci cubes and Lucas cubes
    Klavzar, Sandi
    Rho, Yoomi
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 187 : 155 - 160