Smart Sensor Using Function Approximation

被引:0
|
作者
Shaikh, Kader B. T. [1 ]
机构
[1] VESIT, Bombay, Maharashtra, India
关键词
Function approximation; Smart sensor; ANN; Arduino Uno; FEEDFORWARD NETWORKS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports a neural network (NN) implementation of function approximation. Function approximation (aka, nonlinear regression) identifies input-output relationship from given input-output data set. Concept of function approximation is applied to develop a smart position sensor. Smart position sensor consists of three standard sensors that are coupled with a neural network to produce an estimate of the location of an object in one dimension. MATLAB is used to construct and train the multi layer feed forward neural network. Hardware implementation of trained neural network is done on Arduino Uno microcontroller board.
引用
收藏
页码:1223 / 1226
页数:4
相关论文
共 50 条
  • [31] UNIFORM APPROXIMATION USING A GENERALIZED WEIGHT FUNCTION
    LOEB, H
    MOURSUND, D
    SIAM REVIEW, 1969, 11 (02) : 302 - &
  • [32] Function approximation using artificial neural networks
    Zainuddin, Zarita
    Pauline, Ong
    APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING, 2007, : 140 - +
  • [33] Multiagent reinforcement learning using function approximation
    Abul, O
    Polat, F
    Alhajj, R
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2000, 30 (04): : 485 - 497
  • [34] Function approximation using a sinc neural network
    Elwasif, WR
    Fausett, LV
    APPLICATIONS AND SCIENCE OF ARTIFICIAL NEURAL NETWORKS II, 1996, 2760 : 690 - 701
  • [35] Wavelet approximation of a function using Chebyshev wavelets
    Nigam, H. K.
    Mohapatra, R. N.
    Murari, K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [36] Viscosity Approximation of PDMS Using Weibull Function
    Chmielowiec, Andrzej
    Wos, Weronika
    Gumieniak, Justyna
    MATERIALS, 2021, 14 (20)
  • [37] Approximation of function using generalized Zygmund class
    Nigam, H. K.
    Mursaleen, Mohammad
    Rani, Supriya
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [38] Optimal function approximation using fuzzy rules
    Lisin, D
    Gennert, MA
    18TH INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1999, : 184 - 188
  • [39] Classification Using Φ-Machines and Constructive Function Approximation
    Doina Precup
    Paul E. Utgoff
    Machine Learning, 2004, 55 : 31 - 52
  • [40] Approximation of function using generalized Zygmund class
    H. K. Nigam
    Mohammad Mursaleen
    Supriya Rani
    Advances in Difference Equations, 2021