Approximation of function using generalized Zygmund class

被引:0
|
作者
H. K. Nigam
Mohammad Mursaleen
Supriya Rani
机构
[1] Central University of South Bihar,Department of Mathematics
[2] Aligarh Muslim University,Department of Mathematics
[3] China Medical University (Taiwan),Department of Medical Research, China Medical University Hospital
关键词
Generalized Minkowski inequality (GMI); Best approximation; Generalized Zygmund class; Matrix ; means; means; Matrix-Cesàro (; order) ; Fourier series (F.S.); Derived Fourier series (D.F.S.); 42A10; 41A10; 42B05; 42B08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we review some of the previous work done by the earlier authors (Singh et al. in J. Inequal. Appl. 2017:101, 2017; Lal and Shireen in Bull. Math. Anal. Appl. 5(4):1–13, 2013), etc., on error approximation of a function g in the generalized Zygmund space and resolve the issue of these works. We also determine the best error approximation of the functions g and g′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g^{\prime }$\end{document}, where g′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g^{\prime }$\end{document} is a derived function of a 2π-periodic function g, in the generalized Zygmund class Xz(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{z}^{(\eta )}$\end{document}, z≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z\geq 1$\end{document}, using matrix-Cesàro (TCδ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(TC^{\delta })$\end{document} means of its Fourier series and its derived Fourier series, respectively. Theorem 2.1 of the present paper generalizes eight earlier results, which become its particular cases. Thus, the results of (Dhakal in Int. Math. Forum 5(35):1729–1735, 2010; Dhakal in Int. J. Eng. Technol. 2(3):1–15, 2013; Nigam in Surv. Math. Appl. 5:113–122, 2010; Nigam in Commun. Appl. Anal. 14(4):607–614, 2010; Nigam and Sharma in Kyungpook Math. J. 50:545–556, 2010; Nigam and Sharma in Int. J. Pure Appl. Math. 70(6):775–784, 2011; Kushwaha and Dhakal in Nepal J. Sci. Technol. 14(2):117–122, 2013; Shrivastava et al. in IOSR J. Math. 10(1 Ver. I):39–41, 2014) become particular cases of our Theorem 2.1. Several corollaries are also deduced from our Theorem 2.1.
引用
收藏
相关论文
共 50 条
  • [1] Approximation of function using generalized Zygmund class
    Nigam, H. K.
    Mursaleen, Mohammad
    Rani, Supriya
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [2] ON APPROXIMATION OF FUNCTION IN GENERALIZED ZYGMUND CLASS USING CηT OPERATOR
    Nigam, H. K.
    Hadish, Md
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 273 - 289
  • [3] BEST APPROXIMATION OF CONJUGATE OF A FUNCTION IN GENERALIZED ZYGMUND CLASS
    Nigam, Hare Krishna
    TAMKANG JOURNAL OF MATHEMATICS, 2019, 50 (04): : 417 - 428
  • [4] On approximation in generalized Zygmund class
    Nigam, Hare Krishna
    DEMONSTRATIO MATHEMATICA, 2019, 52 (01) : 370 - 387
  • [5] STRONG APPROXIMATION AND GENERALIZED ZYGMUND CLASS
    LEINDLER, L
    ACTA SCIENTIARUM MATHEMATICARUM, 1981, 43 (3-4): : 301 - 309
  • [6] Approximation of functions in the generalized Zygmund class using Hausdorff means
    Singh, Mradul Veer
    Mittal, M. L.
    Rhoades, B. E.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [7] Approximation of functions in the generalized Zygmund class using Hausdorff means
    Mradul Veer Singh
    ML Mittal
    BE Rhoades
    Journal of Inequalities and Applications, 2017
  • [8] Approximation in the Zygmund class
    Nicolau, Artur
    Soler i Gibert, Odi
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (01): : 226 - 246
  • [9] Approximation of functions in generalized Zygmund class by double Hausdorff matrix
    Nigam, H. K.
    Mursaleen, M.
    Rani, Supriya
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] Approximation of functions in generalized Zygmund class by double Hausdorff matrix
    H. K. Nigam
    M. Mursaleen
    Supriya Rani
    Advances in Difference Equations, 2020