Approximation of function using generalized Zygmund class

被引:0
|
作者
H. K. Nigam
Mohammad Mursaleen
Supriya Rani
机构
[1] Central University of South Bihar,Department of Mathematics
[2] Aligarh Muslim University,Department of Mathematics
[3] China Medical University (Taiwan),Department of Medical Research, China Medical University Hospital
关键词
Generalized Minkowski inequality (GMI); Best approximation; Generalized Zygmund class; Matrix ; means; means; Matrix-Cesàro (; order) ; Fourier series (F.S.); Derived Fourier series (D.F.S.); 42A10; 41A10; 42B05; 42B08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we review some of the previous work done by the earlier authors (Singh et al. in J. Inequal. Appl. 2017:101, 2017; Lal and Shireen in Bull. Math. Anal. Appl. 5(4):1–13, 2013), etc., on error approximation of a function g in the generalized Zygmund space and resolve the issue of these works. We also determine the best error approximation of the functions g and g′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g^{\prime }$\end{document}, where g′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g^{\prime }$\end{document} is a derived function of a 2π-periodic function g, in the generalized Zygmund class Xz(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{z}^{(\eta )}$\end{document}, z≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z\geq 1$\end{document}, using matrix-Cesàro (TCδ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(TC^{\delta })$\end{document} means of its Fourier series and its derived Fourier series, respectively. Theorem 2.1 of the present paper generalizes eight earlier results, which become its particular cases. Thus, the results of (Dhakal in Int. Math. Forum 5(35):1729–1735, 2010; Dhakal in Int. J. Eng. Technol. 2(3):1–15, 2013; Nigam in Surv. Math. Appl. 5:113–122, 2010; Nigam in Commun. Appl. Anal. 14(4):607–614, 2010; Nigam and Sharma in Kyungpook Math. J. 50:545–556, 2010; Nigam and Sharma in Int. J. Pure Appl. Math. 70(6):775–784, 2011; Kushwaha and Dhakal in Nepal J. Sci. Technol. 14(2):117–122, 2013; Shrivastava et al. in IOSR J. Math. 10(1 Ver. I):39–41, 2014) become particular cases of our Theorem 2.1. Several corollaries are also deduced from our Theorem 2.1.
引用
收藏
相关论文
共 50 条
  • [41] The best approximation of function and class RBSVS
    Asetov, A. A.
    Akishev, G. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2013, 70 (02): : 22 - 27
  • [42] CALDERON-ZYGMUND SINGULAR INTEGRAL ESTIMATES IN GENERALIZED WEIGHTED FUNCTION SPACES
    Loulit, Ahmed
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 307 (01) : 197 - 220
  • [43] Porosity of sets and the Zygmund class
    Donaire, JJ
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 : 659 - 666
  • [44] Approximation in the Zygmund and Holder classes on Rn
    Saksman, Eero
    Gibert, Odi Soler i
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (06): : 1745 - 1770
  • [45] Differentiability of functions in the Zygmund class
    Jesus Donaire, Juan
    Llorente, Jose G.
    Nicolau, Artur
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 133 - 158
  • [46] RATIONAL APPROXIMATION TO LIPSCHITZ AND ZYGMUND CLASSES
    BORWEIN, PB
    ZHOU, SP
    CONSTRUCTIVE APPROXIMATION, 1992, 8 (04) : 381 - 399
  • [47] BEST APPROXIMATION BY A SATURATION CLASS OF GENERALIZED NORLUND OPERATORS
    SINGH, JP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (06): : A543 - A543
  • [48] Best approximation of functions in generalized Hölder class
    H. K. Nigam
    Md. Hadish
    Journal of Inequalities and Applications, 2018
  • [49] Free interpolation for the Zygmund class
    Tugores, Francesc
    Tugores, Laia
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (06) : 989 - 993
  • [50] TRACES OF FUNCTIONS OF ZYGMUND CLASS
    SHVARTSMAN, PA
    SIBERIAN MATHEMATICAL JOURNAL, 1987, 28 (05) : 853 - 863