Smart Sensor Using Function Approximation

被引:0
|
作者
Shaikh, Kader B. T. [1 ]
机构
[1] VESIT, Bombay, Maharashtra, India
关键词
Function approximation; Smart sensor; ANN; Arduino Uno; FEEDFORWARD NETWORKS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports a neural network (NN) implementation of function approximation. Function approximation (aka, nonlinear regression) identifies input-output relationship from given input-output data set. Concept of function approximation is applied to develop a smart position sensor. Smart position sensor consists of three standard sensors that are coupled with a neural network to produce an estimate of the location of an object in one dimension. MATLAB is used to construct and train the multi layer feed forward neural network. Hardware implementation of trained neural network is done on Arduino Uno microcontroller board.
引用
收藏
页码:1223 / 1226
页数:4
相关论文
共 50 条
  • [21] Smart Sensor Web: Tactical battlefield visualization using sensor fusion
    Paul, JL
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2006, 21 (01) : 13 - 20
  • [22] Hierarchical structure for function approximation using radial basis function
    Awad, M.
    Pomares, H.
    Rojas, I.
    Herrera, L.J.
    Guillen, A.
    Valenzuela, O.
    WSEAS Transactions on Mathematics, 2006, 5 (01) : 75 - 80
  • [23] Lyapunov stability of smart inverters using linearized distflow approximation
    Saha, Shammya Shananda
    Arnold, Daniel
    Scaglione, Anna
    Schweitzer, Eran
    Roberts, Ciaran
    Peisert, Sean
    Johnson, Nathan G.
    IET RENEWABLE POWER GENERATION, 2021, 15 (01) : 114 - 126
  • [24] Sensor resource allocation for tracking using outer approximation
    Chhetri, Amit S.
    Morrell, Darryl
    Papandreou-Suppappola, Antonia
    IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (03) : 213 - 216
  • [25] New Structure of using Image Sensor Communication in Smart House with Smart Grid
    Wu, Xueying
    Liu, Peng
    Liu, Song
    2012 INTERNATIONAL CONFERENCE ON FUTURE GENERATION COMMUNICATION TECHNOLOGY (FGCT), 2012, : 32 - 35
  • [26] Function approximation using LVQ and fuzzy sets
    Min-Kyu, S
    Murata, J
    Hirasawa, K
    KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 829 - 833
  • [27] Function approximation using serial input neuron
    Huang, AC
    Chiang, YF
    NEUROCOMPUTING, 2002, 47 : 85 - 101
  • [28] A KIND OF BEST APPROXIMATION USING FUNCTION PAIRS
    SHI, YG
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1982, 3 (05): : 639 - 644
  • [29] Classification using φ-machines and constructive function approximation
    Precup, D
    Utgoff, PE
    MACHINE LEARNING, 2004, 55 (01) : 31 - 52
  • [30] Universal Approximation by Using the Correntropy Objective Function
    Nayyeri, Mojtaba
    Yazdi, Hadi Sadoghi
    Maskooki, Alaleh
    Rouhani, Modjtaba
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (09) : 4515 - 4521