Optimal function approximation using fuzzy rules

被引:6
|
作者
Lisin, D [1 ]
Gennert, MA [1 ]
机构
[1] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
关键词
D O I
10.1109/NAFIPS.1999.781679
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It has been constructively proven by Kosko that fuzzy systems are universal approximators. However; the proof does not provide an algorithm to build a fuzzy system that approximates an analytically defined function to an arbitrary precision with a minimum number of fuzzy rules. In this paper we will describe a method that utilizes the information contained in the analytic definition of a function, such as its first and second derivatives, to build a fuzzy system that approximates it.
引用
收藏
页码:184 / 188
页数:5
相关论文
共 50 条
  • [1] Probability density function approximation using fuzzy rules
    Ayala-Ramirez, Victor
    Sanchez-Yanez, Raul E.
    Ibarra-Manzano, Oscar G.
    Montecillo-Puente, Francisco J.
    [J]. MEP 2006: PROCEEDINGS OF MULTICONFERENCE ON ELECTRONICS AND PHOTONICS, 2006, : 220 - +
  • [2] Fuzzy function approximation with ellipsoidal rules
    Dickerson, JA
    Kosko, B
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (04): : 542 - 560
  • [3] Robust function approximation using fuzzy rules with ellipsoidal regions
    Kubota, H
    Tamaki, H
    Abe, S
    [J]. IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI, 2000, : 529 - 534
  • [4] Finding simplified fuzzy if-then rules for function approximation problems using a fuzzy data mining approach
    Hu, YC
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 2005, 19 (06) : 601 - 619
  • [5] FUZZY RULES EXTRACTION DIRECTLY FROM NUMERICAL DATA FOR FUNCTION APPROXIMATION
    ABE, S
    LAN, MS
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1995, 25 (01): : 119 - 129
  • [6] Learning optimal fuzzy rules using simulated annealing
    Dickerson, JA
    [J]. 1997 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1997, : 102 - 105
  • [7] Learning optimal fuzzy rules using simulated annealing
    Dickerson, JA
    [J]. PROCEEDINGS OF THE 39TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I-III, 1996, : 575 - 578
  • [8] Function approximation using LVQ and fuzzy sets
    Min-Kyu, S
    Murata, J
    Hirasawa, K
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 829 - 833
  • [9] Function approximation using LVQ and fuzzy sets
    Min-Kyu, S
    Murata, J
    Hirasawa, K
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: E-SYSTEMS AND E-MAN FOR CYBERNETICS IN CYBERSPACE, 2002, : 1442 - 1447
  • [10] Function approximation based on fuzzy rules extracted from partitioned numerical data
    Thawonmas, R
    Abe, S
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (04): : 525 - 534