共 50 条
Clustering of Small-Sample Single-Cell RNA-Seq Data via Feature Clustering and Selection
被引:2
|作者:
Vans, Edwin
[1
,2
]
Sharma, Alok
[1
,5
,6
,7
]
Patil, Ashwini
[8
]
Shigemizu, Daichi
[3
,4
,5
,6
]
Tsunoda, Tatsuhiko
[4
,5
,6
]
机构:
[1] Univ South Pacific, Sch Engn & Phys, Suva, Fiji
[2] Fiji Natl Univ, Sch Elect & Elect Engn, Suva, Fiji
[3] Natl Ctr Geriatr & Gerontol, Med Genome Ctr, Obu, Aichi 4748511, Japan
[4] Tokyo Med & Dent Univ TMDU, Med Res Inst, Dept Med Sci Math, Tokyo 1138510, Japan
[5] RIKEN, Ctr Integrat Med Sci, Yokohama, Kanagawa 2300045, Japan
[6] JST, CREST, Tokyo 1138510, Japan
[7] Griffith Univ, Inst Integrated & Intelligent Syst, Brisbane, Qld 4111, Australia
[8] Univ Tokyo, Inst Med Sci, Minato Ku, 4-6-1 Shirokanedai, Tokyo 1088639, Japan
来源:
关键词:
Single-cell RNA-Seq;
Hierarchical clustering;
Feature selection;
HETEROGENEITY;
EMBRYOS;
FATE;
D O I:
10.1007/978-3-030-29894-4_36
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We present FeatClust, a software tool for clustering small sample size single-cell RNA-Seq datasets. The FeatClust approach is based on feature selection. It divides features into several groups by performing agglomerative hierarchical clustering and then iteratively clustering the samples and removing features belonging to groups with the least variance across samples. The optimal number of feature groups is selected based on silhouette analysis on the clustered data, i.e., selecting the clustering with the highest average silhouette coefficient. FeatClust also allows one to visually choose the number of clusters if it is not known, by generating silhouette plot for a chosen number of groupings of the dataset. We cluster five small sample single-cell RNA-seq datasets and use the adjusted rand index metric to compare the results with other clustering packages. The results are promising and show the effectiveness of FeatClust on small sample size datasets.
引用
收藏
页码:445 / 456
页数:12
相关论文