Single-cell RNA-seq clustering: datasets, models, and algorithms

被引:48
|
作者
Peng, Lihong [1 ]
Tian, Xiongfei [1 ]
Tian, Geng [2 ]
Xu, Junlin [3 ]
Huang, Xin [1 ]
Weng, Yanbin [1 ]
Yang, Jialiang [2 ]
Zhou, Liqian [1 ]
机构
[1] Hunan Univ Technol, Sch Comp Sci, Zhuzhou, Peoples R China
[2] Geneis Beijing Co Ltd, Beijing, Peoples R China
[3] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Peoples R China
关键词
ScRNA-seq; cell clustering; K-means clustering; hierarchical clustering; consensus clustering; GENE-EXPRESSION; HETEROGENEITY; REVEALS; RECONSTRUCTION; DIVERSITY; NETWORKS; STATES; FATE; LUNG;
D O I
10.1080/15476286.2020.1728961
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) technologies allow numerous opportunities for revealing novel and potentially unexpected biological discoveries. scRNA-seq clustering helps elucidate cell-to-cell heterogeneity and uncover cell subgroups and cell dynamics at the group level. Two important aspects of scRNA-seq data analysis were introduced and discussed in the present review: relevant datasets and analytical tools. In particular, we reviewed popular scRNA-seq datasets and discussed scRNA-seq clustering models including K-means clustering, hierarchical clustering, consensus clustering, and so on. Seven state-of-the-art scRNA clustering methods were compared on five public available datasets. Two primary evaluation metrics, the Adjusted Rand Index (ARI) and the Normalized Mutual Information (NMI), were used to evaluate these methods. Although unsupervised models can effectively cluster scRNA-seq data, these methods also have challenges. Some suggestions were provided for future research directions.
引用
收藏
页码:765 / 783
页数:19
相关论文
共 50 条
  • [1] Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
    Mahalanabis, Alaina
    Turinsky, Andrei L.
    Husic, Mia
    Christensen, Erik
    Luo, Ping
    Naidas, Alaine
    Brudno, Michael
    Pugh, Trevor
    Ramani, Arun K.
    Shooshtari, Parisa
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 6375 - 6387
  • [2] Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
    Mahalanabis, Alaina
    Turinsky, Andrei L.
    Husić, Mia
    Christensen, Erik
    Luo, Ping
    Naidas, Alaine
    Brudno, Michael
    Pugh, Trevor
    Ramani, Arun K.
    Shooshtari, Parisa
    [J]. Computational and Structural Biotechnology Journal, 2022, 20 : 6375 - 6387
  • [3] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    [J]. BMC Bioinformatics, 19
  • [4] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [5] Dirichlet process mixture models for single-cell RNA-seq clustering
    Adossa, Nigatu A.
    Rytkonen, Kalle T.
    Elo, Laura L.
    [J]. BIOLOGY OPEN, 2022, 11 (04):
  • [6] Processing single-cell RNA-seq datasets using SingCellaR
    Wang, Guanlin
    Wen, Wei Xiong
    Mead, Adam J.
    Roy, Anindita
    Psaila, Bethan
    Thongjuea, Supat
    [J]. STAR PROTOCOLS, 2022, 3 (02):
  • [7] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    [J]. CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [8] scMAE: a masked autoencoder for single-cell RNA-seq clustering
    Fang, Zhaoyu
    Zheng, Ruiqing
    Li, Min
    [J]. BIOINFORMATICS, 2024, 40 (01)
  • [9] Improving Single-Cell RNA-seq Clustering by Integrating Pathways
    Zhang, Chenxing
    Gao, Lin
    Wang, Bingbo
    Gao, Yong
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [10] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    [J]. CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210