SC3: Consensus clustering of single-cell RNA-seq data

被引:0
|
作者
Kiselev V.Y. [1 ]
Kirschner K. [2 ]
Schaub M.T. [3 ,4 ]
Andrews T. [1 ]
Yiu A. [1 ]
Chandra T. [1 ,5 ]
Natarajan K.N. [1 ,6 ]
Reik W. [1 ,5 ,7 ]
Barahona M. [8 ]
Green A.R. [2 ]
Hemberg M. [1 ]
机构
[1] Wellcome Trust Sanger Institute, Hinxton, Cambridge
[2] Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Department of Haematology, University of Cambridge, Hills Road, Cambridge
[3] Department of Mathematics and NaXys, University of Namur, Namur
[4] ICTEAM, Université Catholique de Louvain, Louvain-la-Neuve
[5] Epigenetics Programme, Babraham Institute, Babraham, Cambridge
[6] EMBL-European Bioinformatics Institute, Hinxton, Cambridge
[7] Centre for Trophoblast Research, University of Cambridge, Cambridge
[8] Department of Mathematics, Imperial College London, London
基金
英国医学研究理事会; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
D O I
10.1038/nmeth.4236
中图分类号
学科分类号
摘要
Single-cell RNA-seq enables the quantitative characterization of cell types based on global transcriptome profiles. We present single-cell consensus clustering (SC3), a user-friendly tool for unsupervised clustering, which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach (http://bioconductor.org/packages/SC3). We demonstrate that SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients. © 2017 Nature America, Inc. part of Springer Nature. All rights reserved.
引用
收藏
页码:483 / 486
页数:3
相关论文
共 50 条
  • [1] SC3: consensus clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Kirschner, Kristina
    Schaub, Michael T.
    Andrews, Tallulah
    Yiu, Andrew
    Chandra, Tamir
    Natarajan, Kedar N.
    Reik, Wolf
    Barahona, Mauricio
    Green, Anthony R.
    Hemberg, Martin
    [J]. NATURE METHODS, 2017, 14 (05) : 483 - +
  • [2] Consensus clustering of single-cell RNA-seq data by enhancing network affinity
    Cui, Yaxuan
    Zhang, Shaoqiang
    Liang, Ying
    Wang, Xiangyun
    Ferraro, Thomas N.
    Chen, Yong
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [3] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    [J]. CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [4] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    [J]. CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [5] HNC: a hybrid neighbourhood-consensus clustering algorithm for single-cell RNA-seq data
    Das, Priyojit
    Saha, Sujay
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2021, 25 (3-4) : 161 - 180
  • [6] An active learning approach for clustering single-cell RNA-seq data
    Lin, Xiang
    Liu, Haoran
    Wei, Zhi
    Roy, Senjuti Basu
    Gao, Nan
    [J]. LABORATORY INVESTIGATION, 2022, 102 (03) : 227 - 235
  • [7] Single-cell RNA-seq data clustering by deep information fusion
    Ren, Liangrui
    Wang, Jun
    Li, Wei
    Guo, Maozu
    Yu, Guoxian
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (02) : 128 - 137
  • [8] A Global Similarity Learning for Clustering of Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Guo, Lilu
    Xu, Yunpei
    Li, Hong-Dong
    Liao, Xingyu
    Wu, Fang-Xiang
    Peng, Xiaoqing
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 261 - 266
  • [9] Impact of similarity metrics on single-cell RNA-seq data clustering
    Kim, Taiyun
    Chen, Irene Rui
    Lin, Yingxin
    Wang, Andy Yi-Yang
    Yang, Jean Yee Hwa
    Yang, Pengyi
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (06) : 2316 - 2326
  • [10] Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method
    Yanglan Gan
    Ning Li
    Guobing Zou
    Yongchang Xin
    Jihong Guan
    [J]. BMC Medical Genomics, 11