Clustering of Small-Sample Single-Cell RNA-Seq Data via Feature Clustering and Selection

被引:2
|
作者
Vans, Edwin [1 ,2 ]
Sharma, Alok [1 ,5 ,6 ,7 ]
Patil, Ashwini [8 ]
Shigemizu, Daichi [3 ,4 ,5 ,6 ]
Tsunoda, Tatsuhiko [4 ,5 ,6 ]
机构
[1] Univ South Pacific, Sch Engn & Phys, Suva, Fiji
[2] Fiji Natl Univ, Sch Elect & Elect Engn, Suva, Fiji
[3] Natl Ctr Geriatr & Gerontol, Med Genome Ctr, Obu, Aichi 4748511, Japan
[4] Tokyo Med & Dent Univ TMDU, Med Res Inst, Dept Med Sci Math, Tokyo 1138510, Japan
[5] RIKEN, Ctr Integrat Med Sci, Yokohama, Kanagawa 2300045, Japan
[6] JST, CREST, Tokyo 1138510, Japan
[7] Griffith Univ, Inst Integrated & Intelligent Syst, Brisbane, Qld 4111, Australia
[8] Univ Tokyo, Inst Med Sci, Minato Ku, 4-6-1 Shirokanedai, Tokyo 1088639, Japan
关键词
Single-cell RNA-Seq; Hierarchical clustering; Feature selection; HETEROGENEITY; EMBRYOS; FATE;
D O I
10.1007/978-3-030-29894-4_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present FeatClust, a software tool for clustering small sample size single-cell RNA-Seq datasets. The FeatClust approach is based on feature selection. It divides features into several groups by performing agglomerative hierarchical clustering and then iteratively clustering the samples and removing features belonging to groups with the least variance across samples. The optimal number of feature groups is selected based on silhouette analysis on the clustered data, i.e., selecting the clustering with the highest average silhouette coefficient. FeatClust also allows one to visually choose the number of clusters if it is not known, by generating silhouette plot for a chosen number of groupings of the dataset. We cluster five small sample single-cell RNA-seq datasets and use the adjusted rand index metric to compare the results with other clustering packages. The results are promising and show the effectiveness of FeatClust on small sample size datasets.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 50 条
  • [41] Review of single-cell RNA-seq data clustering for cell-type identification and characterization
    Zhang, Shixiong
    Li, Xiangtao
    Lin, Jiecong
    Lin, Qiuzhen
    Wong, Ka-Chun
    RNA, 2023, 29 (05) : 517 - 530
  • [42] A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Li, Hong-Dong
    Xu, Yunpei
    Guo, Lilu
    Wu, Fang-Xiang
    Duan, Guihua
    Wang, Jianxin
    GENES, 2019, 10 (02)
  • [43] Impact of data preprocessing on cell-type clustering based on single-cell RNA-seq data
    Chunxiang Wang
    Xin Gao
    Juntao Liu
    BMC Bioinformatics, 21
  • [44] Impact of data preprocessing on cell-type clustering based on single-cell RNA-seq data
    Wang, Chunxiang
    Gao, Xin
    Liu, Juntao
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [45] Dirichlet process mixture models for single-cell RNA-seq clustering
    Adossa, Nigatu A.
    Rytkonen, Kalle T.
    Elo, Laura L.
    BIOLOGY OPEN, 2022, 11 (04):
  • [46] Crafted experiments to evaluate feature selection methods for single-cell RNA-seq data
    Liu, Siyao
    Corcoran, David L.
    Garcia-Recio, Susana
    Marron, James S.
    Perou, Charles M.
    NAR GENOMICS AND BIOINFORMATICS, 2025, 7 (01)
  • [47] Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes
    Heaton, Haynes
    Talman, Arthur M.
    Knights, Andrew
    Imaz, Maria
    Gaffney, Daniel J.
    Durbin, Richard
    Hemberg, Martin
    Lawniczak, Mara K. N.
    NATURE METHODS, 2020, 17 (06) : 615 - +
  • [48] scVGATAE: A Variational Graph Attentional Autoencoder Model for Clustering Single-Cell RNA-seq Data
    Liu, Lijun
    Wu, Xiaoyang
    Yu, Jun
    Zhang, Yuduo
    Niu, Kaixing
    Yu, Anli
    BIOLOGY-BASEL, 2024, 13 (09):
  • [49] HNC: a hybrid neighbourhood-consensus clustering algorithm for single-cell RNA-seq data
    Das, Priyojit
    Saha, Sujay
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2021, 25 (3-4) : 161 - 180
  • [50] Enhancing Clustering of single-cell RNA-seq data by Proximity Learning on Random Projected spaces
    Vrahatis, Aristidis G.
    Dimitrakopoulos, Georgios N.
    Tasoulis, Sotiris K.
    Plagianakos, Vassilis P.
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 846 - 849